CAIE FP1 (Further Pure Mathematics 1) 2010 November

Question 1
View details
1 The curve \(C\) has equation \(y = \frac { 1 } { 4 } \left( \mathrm { e } ^ { 2 x } + \mathrm { e } ^ { - 2 x } \right)\). Show that the length of the \(\operatorname { arc }\) of \(C\) from the point where \(x = 0\) to the point where \(x = \frac { 1 } { 2 }\) is \(\frac { \mathrm { e } ^ { 2 } - 1 } { 4 \mathrm { e } }\).
Question 2
View details
2 Use the method of differences to find \(S _ { N }\), where $$S _ { N } = \sum _ { n = 1 } ^ { N } \frac { 1 } { n ( n + 2 ) }$$ Deduce the value of \(\lim _ { N \rightarrow \infty } S _ { N }\).
Question 3
View details
3 A finite region \(R\) in the \(x - y\) plane is bounded by the curve with equation \(y = \sqrt { } x - \frac { 1 } { \sqrt { } x }\), the \(x\)-axis between \(x = 1\) and \(x = 4\), and the line \(x = 4\). Find the exact value of the \(y\)-coordinate of the centroid of \(R\).
Question 4
View details
4 Prove by mathematical induction that, for all non-negative integers \(n , 7 ^ { 2 n + 1 } + 5 ^ { n + 3 }\) is divisible by 44 .
Question 5
View details
5 Let \(I _ { n } = \int _ { 0 } ^ { 1 } ( 1 - x ) ^ { n } \sin x \mathrm {~d} x\) for \(n \geqslant 0\). Show that $$I _ { n + 2 } = 1 - ( n + 1 ) ( n + 2 ) I _ { n }$$ Hence find the value of \(I _ { 6 }\), correct to 4 decimal places.
Question 6
View details
6 The linear transformation \(\mathrm { T } : \mathbb { R } ^ { 4 } \rightarrow \mathbb { R } ^ { 4 }\) is represented by the matrix \(\mathbf { A }\), where $$\mathbf { A } = \left( \begin{array} { r r r r } 1 & 2 & - 1 & \alpha
2 & 3 & - 1 & 0
2 & 1 & 2 & - 2
0 & 1 & - 3 & - 2 \end{array} \right)$$ Given that the dimension of the range space of T is 4 , show that \(\alpha \neq 1\). It is now given that \(\alpha = 1\). Show that the vectors $$\left( \begin{array} { l } 1
2
2
0 \end{array} \right) , \quad \left( \begin{array} { l } 2
3
1
1 \end{array} \right) \quad \text { and } \quad \left( \begin{array} { r } - 1
- 1
2
- 3 \end{array} \right)$$ form a basis for the range space of T . Given also that the vector \(\left( \begin{array} { c } p
1
1
q \end{array} \right)\) is in the range space of T , find a condition satisfied by \(p\) and \(q\).
Question 7
View details
7 The roots of the equation \(x ^ { 3 } + 4 x - 1 = 0\) are \(\alpha , \beta\) and \(\gamma\). Use the substitution \(y = \frac { 1 } { 1 + x }\) to show that the equation \(6 y ^ { 3 } - 7 y ^ { 2 } + 3 y - 1 = 0\) has roots \(\frac { 1 } { \alpha + 1 } , \frac { 1 } { \beta + 1 }\) and \(\frac { 1 } { \gamma + 1 }\). For the cases \(n = 1\) and \(n = 2\), find the value of $$\frac { 1 } { ( \alpha + 1 ) ^ { n } } + \frac { 1 } { ( \beta + 1 ) ^ { n } } + \frac { 1 } { ( \gamma + 1 ) ^ { n } }$$ Deduce the value of \(\frac { 1 } { ( \alpha + 1 ) ^ { 3 } } + \frac { 1 } { ( \beta + 1 ) ^ { 3 } } + \frac { 1 } { ( \gamma + 1 ) ^ { 3 } }\). Hence show that \(\frac { ( \beta + 1 ) ( \gamma + 1 ) } { ( \alpha + 1 ) ^ { 2 } } + \frac { ( \gamma + 1 ) ( \alpha + 1 ) } { ( \beta + 1 ) ^ { 2 } } + \frac { ( \alpha + 1 ) ( \beta + 1 ) } { ( \gamma + 1 ) ^ { 2 } } = \frac { 73 } { 36 }\).
Question 8
View details
8 The curves \(C _ { 1 }\) and \(C _ { 2 }\) have polar equations given by $$\begin{array} { l l r } C _ { 1 } : & r = 3 \sin \theta , & 0 \leqslant \theta < \pi ,
C _ { 2 } : & r = 1 + \sin \theta , & - \pi < \theta \leqslant \pi . \end{array}$$
  1. Find the polar coordinates of the points, other than the pole, where \(C _ { 1 }\) and \(C _ { 2 }\) meet.
  2. In a single diagram, draw sketch graphs of \(C _ { 1 }\) and \(C _ { 2 }\).
  3. Show that the area of the region which is inside \(C _ { 1 }\) but outside \(C _ { 2 }\) is \(\pi\).
Question 9
View details
9 Find the eigenvalues and corresponding eigenvectors of the matrix $$\mathbf { A } = \left( \begin{array} { r r r } 3 & - 1 & 0
- 1 & 2 & - 1
0 & - 1 & 3 \end{array} \right)$$ Find a non-singular matrix \(\mathbf { M }\) and a diagonal matrix \(\mathbf { D }\) such that \(( \mathbf { A } - 2 \mathbf { I } ) ^ { 3 } = \mathbf { M D M } ^ { - 1 }\), where \(\mathbf { I }\) is the \(3 \times 3\) identity matrix.
Question 10
View details
10 By using de Moivre's theorem to express \(\sin 5 \theta\) and \(\cos 5 \theta\) in terms of \(\sin \theta\) and \(\cos \theta\), show that $$\tan 5 \theta = \frac { 5 t - 10 t ^ { 3 } + t ^ { 5 } } { 1 - 10 t ^ { 2 } + 5 t ^ { 4 } }$$ where \(t = \tan \theta\). Show that the roots of the equation \(x ^ { 4 } - 10 x ^ { 2 } + 5 = 0\) are \(\tan \left( \frac { 1 } { 5 } n \pi \right)\) for \(n = 1,2,3,4\). By considering the product of the roots of this equation, find the exact value of \(\tan \left( \frac { 1 } { 5 } \pi \right) \tan \left( \frac { 2 } { 5 } \pi \right)\).
Question 11
View details
11 It is given that \(x \neq 0\) and $$x \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 2 \frac { \mathrm {~d} y } { \mathrm {~d} x } + 4 x y = 8 x ^ { 2 } + 16$$ Show that if \(z = x y\) then $$\frac { \mathrm { d } ^ { 2 } z } { \mathrm {~d} x ^ { 2 } } + 4 z = 8 x ^ { 2 } + 16$$ Find \(y\) in terms of \(x\), given that \(y = 0\) and \(\frac { \mathrm { d } y } { \mathrm {~d} x } = - 2\) when \(x = \frac { 1 } { 2 } \pi\).
Question 12 EITHER
View details
The curve \(C\) has equation $$y = \frac { x ^ { 2 } + 2 \lambda x } { x ^ { 2 } - 2 x + \lambda }$$ where \(\lambda\) is a constant and \(\lambda \neq - 1\).
  1. Show that \(C\) has at most two stationary points.
  2. Show that if \(C\) has exactly two stationary points then \(\lambda > - \frac { 5 } { 4 }\).
  3. Find the set of values of \(\lambda\) such that \(C\) has two vertical asymptotes.
  4. Find the \(x\)-coordinates of the points of intersection of \(C\) with
    (a) the \(x\)-axis,
    (b) the horizontal asymptote.
  5. Sketch \(C\) in each of the cases
    (a) \(\lambda < - 2\),
    (b) \(\lambda > 2\).
Question 12 OR
View details
The plane \(\Pi _ { 1 }\) has equation \(\mathbf { r } = 2 \mathbf { i } + \mathbf { j } + 4 \mathbf { k } + \lambda ( 2 \mathbf { i } + 3 \mathbf { j } + 4 \mathbf { k } ) + \mu ( - \mathbf { i } + \mathbf { k } )\). Obtain a cartesian equation of \(\Pi _ { 1 }\) in the form \(p x + q y + r z = d\). The plane \(\Pi _ { 2 }\) has equation \(\mathbf { r } . ( \mathbf { i } - 4 \mathbf { j } + 5 \mathbf { k } ) = 12\). Find a vector equation of the line of intersection of \(\Pi _ { 1 }\) and \(\Pi _ { 2 }\). The line \(l\) passes through the point \(A\) with position vector \(a \mathbf { i } + ( 2 a + 1 ) \mathbf { j } - 3 \mathbf { k }\) and is parallel to \(3 c \mathbf { i } - 3 \mathbf { j } + c \mathbf { k }\), where \(a\) and \(c\) are positive constants. Given that the perpendicular distance from \(A\) to \(\Pi _ { 1 }\) is \(\frac { 15 } { \sqrt { } 6 }\) and that the acute angle between \(l\) and \(\Pi _ { 1 }\) is \(\sin ^ { - 1 } \left( \frac { 2 } { \sqrt { } 6 } \right)\), find the values of \(a\) and \(c\). \footnotetext{Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.
University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge. }