| Exam Board | CAIE |
| Module | FP1 (Further Pure Mathematics 1) |
| Year | 2008 |
| Session | November |
| Topic | Vectors: Lines & Planes |
11 The plane \(\Pi _ { 1 }\) has equation
$$\mathbf { r } = \mathbf { i } + 2 \mathbf { j } + \mathbf { k } + \theta ( 2 \mathbf { j } - \mathbf { k } ) + \phi ( 3 \mathbf { i } + 2 \mathbf { j } - 2 \mathbf { k } )$$
Find a vector normal to \(\Pi _ { 1 }\) and hence show that the equation of \(\Pi _ { 1 }\) can be written as \(2 x + 3 y + 6 z = 14\).
The line \(l\) has equation
$$\mathbf { r } = 3 \mathbf { i } + 8 \mathbf { j } + 2 \mathbf { k } + t ( 4 \mathbf { i } + 6 \mathbf { j } + 5 \mathbf { k } )$$
The point on \(l\) where \(t = \lambda\) is denoted by \(P\). Find the set of values of \(\lambda\) for which the perpendicular distance of \(P\) from \(\Pi _ { 1 }\) is not greater than 4 .
The plane \(\Pi _ { 2 }\) contains \(l\) and the point with position vector \(\mathbf { i } + 2 \mathbf { j } + \mathbf { k }\). Find the acute angle between \(\Pi _ { 1 }\) and \(\Pi _ { 2 }\).