CAIE FP1 2008 November — Question 11

Exam BoardCAIE
ModuleFP1 (Further Pure Mathematics 1)
Year2008
SessionNovember
TopicVectors: Lines & Planes

11 The plane \(\Pi _ { 1 }\) has equation $$\mathbf { r } = \mathbf { i } + 2 \mathbf { j } + \mathbf { k } + \theta ( 2 \mathbf { j } - \mathbf { k } ) + \phi ( 3 \mathbf { i } + 2 \mathbf { j } - 2 \mathbf { k } )$$ Find a vector normal to \(\Pi _ { 1 }\) and hence show that the equation of \(\Pi _ { 1 }\) can be written as \(2 x + 3 y + 6 z = 14\). The line \(l\) has equation $$\mathbf { r } = 3 \mathbf { i } + 8 \mathbf { j } + 2 \mathbf { k } + t ( 4 \mathbf { i } + 6 \mathbf { j } + 5 \mathbf { k } )$$ The point on \(l\) where \(t = \lambda\) is denoted by \(P\). Find the set of values of \(\lambda\) for which the perpendicular distance of \(P\) from \(\Pi _ { 1 }\) is not greater than 4 . The plane \(\Pi _ { 2 }\) contains \(l\) and the point with position vector \(\mathbf { i } + 2 \mathbf { j } + \mathbf { k }\). Find the acute angle between \(\Pi _ { 1 }\) and \(\Pi _ { 2 }\).