| Exam Board | CAIE |
| Module | FP1 (Further Pure Mathematics 1) |
| Year | 2008 |
| Session | November |
| Topic | Integration with Partial Fractions |
2 Let \(y = \mathrm { e } ^ { x }\). Find the mean value of \(y\) with respect to \(x\) over the interval \(0 \leqslant x \leqslant 2\).
Show that the mean value of \(x\) with respect to \(y\) over the interval \(1 \leqslant y \leqslant \mathrm { e } ^ { 2 }\) is \(\frac { \mathrm { e } ^ { 2 } + 1 } { \mathrm { e } ^ { 2 } - 1 }\).