CAIE FP1 (Further Pure Mathematics 1) 2004 November

Question 1
View details
1 The linear transformation \(\mathrm { T } : \mathbb { R } ^ { 4 } \rightarrow \mathbb { R } ^ { 4 }\) is represented by the matrix $$\left( \begin{array} { r r r r } 1 & 5 & 2 & 6
2 & 0 & - 1 & 7
3 & - 1 & - 2 & 10
4 & 10 & 13 & 29 \end{array} \right)$$ Find the dimension of the null space of T .
Question 2
View details
2 The curve \(C\) is defined parametrically by $$x = a \cos ^ { 3 } t , \quad y = a \sin ^ { 3 } t , \quad 0 \leqslant t \leqslant \frac { 1 } { 2 } \pi$$ where \(a\) is a positive constant. Find the area of the surface generated when \(C\) is rotated through one complete revolution about the \(x\)-axis.
Question 3
View details
3 Given that $$\alpha + \beta + \gamma = 0 , \quad \alpha ^ { 2 } + \beta ^ { 2 } + \gamma ^ { 2 } = 14 , \quad \alpha ^ { 3 } + \beta ^ { 3 } + \gamma ^ { 3 } = - 18$$ find a cubic equation whose roots are \(\alpha , \beta , \gamma\). Hence find possible values for \(\alpha , \beta , \gamma\).
Question 4
View details
4 The curve \(C\) has polar equation $$r = \mathrm { e } ^ { \frac { 1 } { 5 } \theta } , \quad 0 \leqslant \theta \leqslant \frac { 3 } { 2 } \pi$$
  1. Draw a sketch of \(C\).
  2. Find the length of \(C\), correct to 3 significant figures.
Question 5
View details
5 Let $$S _ { N } = \sum _ { n = 1 } ^ { N } ( - 1 ) ^ { n - 1 } n ^ { 3 }$$ Find \(S _ { 2 N }\) in terms of \(N\), simplifying your answer as far as possible. Hence write down an expression for \(S _ { 2 N + 1 }\) and find the limit, as \(N \rightarrow \infty\), of \(\frac { S _ { 2 N + 1 } } { N ^ { 3 } }\).
Question 6
View details
6 Write down all the 8th roots of unity. Verify that $$\left( z - \mathrm { e } ^ { \mathrm { i } \theta } \right) \left( z - \mathrm { e } ^ { - \mathrm { i } \theta } \right) \equiv z ^ { 2 } - ( 2 \cos \theta ) z + 1$$ Hence express \(z ^ { 8 } - 1\) as the product of two linear factors and three quadratic factors, where all coefficients are real and expressed in a non-trigonometric form.
Question 7
View details
7 The curve \(C\) has equation $$x y + ( x + y ) ^ { 5 } = 1$$
  1. Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = - \frac { 5 } { 6 }\) at the point \(A ( 1,0 )\) on \(C\).
  2. Find the value of \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\) at \(A\).
Question 8
View details
8 The sequence of real numbers \(a _ { 1 } , a _ { 2 } , a _ { 3 } , \ldots\) is such that \(a _ { 1 } = 1\) and $$a _ { n + 1 } = \left( a _ { n } + \frac { 1 } { a _ { n } } \right) ^ { \lambda }$$ where \(\lambda\) is a constant greater than 1 . Prove by mathematical induction that, for \(n \geqslant 2\), $$a _ { n } \geqslant 2 ^ { \mathrm { g } ( n ) }$$ where \(g ( n ) = \lambda ^ { n - 1 }\). Prove also that, for \(n \geqslant 2 , \frac { a _ { n + 1 } } { a _ { n } } > 2 ^ { ( \lambda - 1 ) \mathrm { g } ( n ) }\).
Question 9
View details
9 It is given that $$I _ { n } = \int _ { 0 } ^ { 1 } \left( 1 + x ^ { 3 } \right) ^ { - n } \mathrm {~d} x$$ where \(n > 0\).
  1. Show that $$\frac { \mathrm { d } } { \mathrm {~d} x } \left[ x \left( 1 + x ^ { 3 } \right) ^ { - n } \right] = - ( 3 n - 1 ) \left( 1 + x ^ { 3 } \right) ^ { - n } + 3 n \left( 1 + x ^ { 3 } \right) ^ { - n - 1 }$$ and hence, or otherwise, show that $$I _ { n + 1 } = \frac { 2 ^ { - n } } { 3 n } + \left( 1 - \frac { 1 } { 3 n } \right) I _ { n }$$
  2. By considering the graph of \(y = \frac { 1 } { 1 + x ^ { 3 } }\), show that \(I _ { 1 } < 1\).
  3. Deduce that \(I _ { 3 } < \frac { 53 } { 72 }\).
Question 10
View details
10 The curve \(C\) has equation $$y = \frac { x ^ { 2 } + 2 x - 3 } { ( \lambda x + 1 ) ( x + 4 ) }$$ where \(\lambda\) is a constant.
  1. Find the equations of the asymptotes of \(C\) for the case where \(\lambda = 0\).
  2. Find the equations of the asymptotes of \(C\) for the case where \(\lambda\) is not equal to any of \(- 1,0 , \frac { 1 } { 4 } , \frac { 1 } { 3 }\).
  3. Sketch \(C\) for the case where \(\lambda = - 1\). Show, on your diagram, the equations of the asymptotes and the coordinates of the points of intersection of \(C\) with the coordinate axes.
Question 11
View details
11 The line \(l _ { 1 }\) passes through the point \(A\), whose position vector is \(3 \mathbf { i } - 5 \mathbf { j } - 4 \mathbf { k }\), and is parallel to the vector \(3 \mathbf { i } + 4 \mathbf { j } + 2 \mathbf { k }\). The line \(l _ { 2 }\) passes through the point \(B\), whose position vector is \(2 \mathbf { i } + 3 \mathbf { j } + 5 \mathbf { k }\), and is parallel to the vector \(\mathbf { i } - \mathbf { j } - 4 \mathbf { k }\). The point \(P\) on \(l _ { 1 }\) and the point \(Q\) on \(l _ { 2 }\) are such that \(P Q\) is perpendicular to both \(l _ { 1 }\) and \(l _ { 2 }\). The plane \(\Pi _ { 1 }\) contains \(P Q\) and \(l _ { 1 }\), and the plane \(\Pi _ { 2 }\) contains \(P Q\) and \(l _ { 2 }\).
  1. Find the length of \(P Q\).
  2. Find a vector perpendicular to \(\Pi _ { 1 }\).
  3. Find the perpendicular distance from \(B\) to \(\Pi _ { 1 }\).
  4. Find the angle between \(\Pi _ { 1 }\) and \(\Pi _ { 2 }\).
Question 12 EITHER
View details
The variable \(y\) depends on \(x\), and the variables \(x\) and \(t\) are related by \(x = \mathrm { e } ^ { t }\). Show that $$x \frac { \mathrm {~d} y } { \mathrm {~d} x } = \frac { \mathrm { d } y } { \mathrm {~d} t } \quad \text { and } \quad x ^ { 2 } \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } = \frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} t ^ { 2 } } - \frac { \mathrm { d } y } { \mathrm {~d} t } .$$
  1. Given that \(y\) satisfies the differential equation $$4 x ^ { 2 } \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 16 x \frac { \mathrm {~d} y } { \mathrm {~d} x } + 25 y = 50 ( \ln x ) - 1$$ find a differential equation involving only \(t\) and \(y\).
  2. Show that the complementary function of the differential equation in \(t\) and \(y\) may be written in the form $$R \mathrm { e } ^ { - \frac { 3 } { 2 } t } \sin ( 2 t + \phi )$$ where \(R\) and \(\phi\) are arbitrary constants.
  3. Find a particular integral of the differential equation in \(t\) and \(y\).
  4. Hence find the general solution of the differential equation in \(x\) and \(y\).
Question 12 OR
View details
The matrix \(\mathbf { A }\) has \(\lambda\) as an eigenvalue with \(\mathbf { e }\) as a corresponding eigenvector. Show that if \(\mathbf { A }\) is non-singular then
  1. \(\lambda \neq 0\),
  2. the matrix \(\mathbf { A } ^ { - 1 }\) has \(\lambda ^ { - 1 }\) as an eigenvalue with \(\mathbf { e }\) as a corresponding eigenvector. The matrices \(\mathbf { A }\) and \(\mathbf { B }\) are given by $$\mathbf { A } = \left( \begin{array} { r r r } 1 & - 1 & 2
    0 & - 2 & 4
    0 & 0 & - 3 \end{array} \right) \quad \text { and } \quad \mathbf { B } = ( \mathbf { A } + 4 \mathbf { I } ) ^ { - 1 }$$ Find a non-singular matrix \(\mathbf { P }\), and a diagonal matrix \(\mathbf { D }\), such that \(\mathbf { B } = \mathbf { P D P } ^ { - 1 }\).