CAIE FP1 (Further Pure Mathematics 1) 2017 June

Question 1
View details
1 The roots of the cubic equation \(x ^ { 3 } + 2 x ^ { 2 } - 3 = 0\) are \(\alpha , \beta\) and \(\gamma\).
  1. By using the substitution \(y = \frac { 1 } { x ^ { 2 } }\), find the cubic equation with roots \(\frac { 1 } { \alpha ^ { 2 } } , \frac { 1 } { \beta ^ { 2 } }\) and \(\frac { 1 } { \gamma ^ { 2 } }\).
  2. Hence find the value of \(\frac { 1 } { \alpha ^ { 2 } } + \frac { 1 } { \beta ^ { 2 } } + \frac { 1 } { \gamma ^ { 2 } }\).
  3. Find also the value of \(\frac { 1 } { \alpha ^ { 2 } \beta ^ { 2 } } + \frac { 1 } { \beta ^ { 2 } \gamma ^ { 2 } } + \frac { 1 } { \gamma ^ { 2 } \alpha ^ { 2 } }\).
Question 2
View details
2
  1. Verify that \(\frac { 2 r + 1 } { r ( r + 1 ) ( r + 2 ) } = \frac { 1 } { 2 } \left\{ \frac { ( 2 r + 1 ) ( 2 r + 3 ) } { ( r + 1 ) ( r + 2 ) } - \frac { ( 2 r - 1 ) ( 2 r + 1 ) } { r ( r + 1 ) } \right\}\).
  2. Hence show that \(\sum _ { r = 1 } ^ { n } \frac { 2 r + 1 } { r ( r + 1 ) ( r + 2 ) } = \frac { 1 } { 2 } \left\{ \frac { ( 2 n + 1 ) ( 2 n + 3 ) } { ( n + 1 ) ( n + 2 ) } - \frac { 3 } { 2 } \right\}\).
  3. Deduce the value of \(\sum _ { r = 1 } ^ { \infty } \frac { 2 r + 1 } { r ( r + 1 ) ( r + 2 ) }\).
Question 3 6 marks
View details
3 Prove, by mathematical induction, that \(\sum _ { r = 1 } ^ { n } r \ln \left( \frac { r + 1 } { r } \right) = \ln \left( \frac { ( n + 1 ) ^ { n } } { n ! } \right)\) for all positive integers \(n\). [6]
Question 4
View details
4 A curve \(C\) has equation \(x ^ { 3 } - 3 x y + y ^ { 2 } = 4\). Find the value of \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\) at the point \(( 0,2 )\) of \(C\).
Question 5
View details
5 A curve \(C\) has parametric equations $$x = \frac { 2 } { 5 } t ^ { \frac { 5 } { 2 } } - 2 t ^ { \frac { 1 } { 2 } } , \quad y = \frac { 4 } { 3 } t ^ { \frac { 3 } { 2 } } , \quad \text { for } 1 \leqslant t \leqslant 4$$
  1. Find the exact value of the arc length of \(C\).
  2. Find also the exact value of the surface area generated when \(C\) is rotated through \(2 \pi\) radians about the \(x\)-axis.
Question 6
View details
6 Let \(I _ { n }\) denote \(\int _ { 0 } ^ { 2 } \left( 4 + x ^ { 2 } \right) ^ { - n } \mathrm {~d} x\).
  1. Find \(\frac { \mathrm { d } } { \mathrm { d } x } \left( x \left( 4 + x ^ { 2 } \right) ^ { - n } \right)\) and hence show that $$8 n I _ { n + 1 } = ( 2 n - 1 ) I _ { n } + 2 \times 8 ^ { - n } .$$
  2. Use the result for integrating \(\frac { 1 } { x ^ { 2 } + a ^ { 2 } }\) with respect to \(x\), in the List of Formulae (MF10), to find the value of \(I _ { 1 }\) and deduce that $$I _ { 3 } = \frac { 3 } { 1024 } \pi + \frac { 1 } { 128 }$$
Question 7
View details
7
  1. Use de Moivre's theorem to prove that $$\tan 4 \theta = \frac { 4 \tan \theta - 4 \tan ^ { 3 } \theta } { 1 - 6 \tan ^ { 2 } \theta + \tan ^ { 4 } \theta } .$$
  2. Hence find the solutions of the equation $$t ^ { 4 } - 4 t ^ { 3 } - 6 t ^ { 2 } + 4 t + 1 = 0$$ giving your answers in the form \(\tan k \pi\), where \(k\) is a rational number.
Question 8
View details
8 Find the solution of the differential equation $$\frac { \mathrm { d } ^ { 2 } x } { \mathrm {~d} t ^ { 2 } } + 6 \frac { \mathrm {~d} x } { \mathrm {~d} t } + 9 x = 18 t ^ { 2 } + 6 t + 1$$ given that, when \(t = 0 , x = 3\) and \(\frac { \mathrm { d } x } { \mathrm {~d} t } = 0\).
Question 9
View details
9 The plane \(\Pi _ { 1 }\) passes through the points \(( 1,2,1 )\) and \(( 5 , - 2,9 )\) and is parallel to the vector \(\mathbf { i } + 2 \mathbf { j } + 3 \mathbf { k }\).
  1. Find the cartesian equation of \(\Pi _ { 1 }\).
    The plane \(\Pi _ { 2 }\) contains the lines $$\mathbf { r } = 2 \mathbf { i } - 3 \mathbf { j } + \mathbf { k } + \lambda ( \mathbf { i } - 2 \mathbf { j } - \mathbf { k } ) \quad \text { and } \quad \mathbf { r } = 2 \mathbf { i } - 3 \mathbf { j } + \mathbf { k } + \mu ( 2 \mathbf { i } + 3 \mathbf { j } - \mathbf { k } ) .$$
  2. Find the cartesian equation of \(\Pi _ { 2 }\).
  3. Find the acute angle between \(\Pi _ { 1 }\) and \(\Pi _ { 2 }\).
Question 10
View details
10 The matrix \(\mathbf { A }\) is given by $$\mathbf { A } = \left( \begin{array} { l l l } 6 & - 8 & 7
7 & - 9 & 7
6 & - 6 & 5 \end{array} \right)$$
  1. Given that \(\left( \begin{array} { l } 1
    1
    0 \end{array} \right)\) is an eigenvector of \(\mathbf { A }\), find the corresponding eigenvalue.
  2. Given also that - 1 is an eigenvalue of \(\mathbf { A }\), find a corresponding eigenvector.
  3. It is given that the determinant of \(\mathbf { A }\) is equal to the product of the eigenvalues of \(\mathbf { A }\). Use this result to find the third eigenvalue of \(\mathbf { A }\), and find also a corresponding eigenvector.
  4. Write down matrices \(\mathbf { P }\) and \(\mathbf { D }\) such that \(\mathbf { P } ^ { - 1 } \mathbf { A P } = \mathbf { D }\), where \(\mathbf { D }\) is a diagonal matrix, and hence find the matrix \(\mathbf { A } ^ { n }\) in terms of \(n\), where \(n\) is a positive integer.
Question 11 EITHER
View details
A curve \(C\) has polar equation \(r = 2 a \cos \left( 2 \theta + \frac { 1 } { 2 } \pi \right)\) for \(0 \leqslant \theta < 2 \pi\), where \(a\) is a positive constant.
  1. Show that \(r = - 2 a \sin 2 \theta\) and sketch \(C\).
  2. Deduce that the cartesian equation of \(C\) is $$\left( x ^ { 2 } + y ^ { 2 } \right) ^ { \frac { 3 } { 2 } } = - 4 a x y .$$
  3. Find the area of one loop of \(C\).
  4. Show that, at the points (other than the pole) at which a tangent to \(C\) is parallel to the initial line, $$2 \tan \theta = - \tan 2 \theta .$$
Question 11 OR
View details
The matrix \(\mathbf { A }\), given by $$\mathbf { A } = \left( \begin{array} { r r r r } 1 & - 1 & 0 & 2
3 & - 1 & 4 & 0
5 & - 8 & - 6 & 19
- 2 & 3 & 2 & - 7 \end{array} \right) ,$$ represents a transformation from \(\mathbb { R } ^ { 4 }\) to \(\mathbb { R } ^ { 4 }\).
  1. Find the rank of \(\mathbf { A }\) and show that \(\left\{ \left( \begin{array} { r } 2
    2
    - 1
    0 \end{array} \right) , \left( \begin{array} { l } 1
    3
    0
    1 \end{array} \right) \right\}\) is a basis for the null space of the transformation.
  2. Show that if $$\mathbf { A x } = p \left( \begin{array} { r } 1
    3
    5
    - 2 \end{array} \right) + q \left( \begin{array} { r } - 1
    - 1
    - 8
    3 \end{array} \right) ,$$ where \(p\) and \(q\) are given real numbers, then $$\mathbf { x } = \left( \begin{array} { c } p + 2 \lambda + \mu
    q + 2 \lambda + 3 \mu
    - \lambda
    \mu \end{array} \right) ,$$ where \(\lambda\) and \(\mu\) are real numbers.
  3. Find the values of \(p\) and \(q\) such that $$p \left( \begin{array} { r } 1
    3
    5
    - 2 \end{array} \right) + q \left( \begin{array} { r } - 1
    - 1
    - 8
    3 \end{array} \right) = \left( \begin{array} { r } 3
    7
Question 18
View details
18
- 7 \end{array} \right)$$ (iv) Find the solution of the equation \(\mathbf { A x } = \left( \begin{array} { r } 3
7
18
- 7 \end{array} \right)\) of the form \(\mathbf { x } = \left( \begin{array} { l } 4
9
\alpha
\beta \end{array} \right)\), where \(\alpha\) and \(\beta\) are positive integers to be found.
\footnotetext{Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.
To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at \href{http://www.cie.org.uk}{www.cie.org.uk} after the live examination series. Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge. }