5 It is given that \(y = \sin ^ { - 1 } 2 x\).
- Using the derivative of \(\sin ^ { - 1 } x\) given in the List of Formulae (MF1), find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\).
- Show that \(\left( 1 - 4 x ^ { 2 } \right) \frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } = 4 x \frac { \mathrm {~d} y } { \mathrm {~d} x }\).
- Hence show that \(\left( 1 - 4 x ^ { 2 } \right) \frac { \mathrm { d } ^ { 3 } y } { \mathrm {~d} x ^ { 3 } } - 12 x \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } - 4 \frac { \mathrm {~d} y } { \mathrm {~d} x } = 0\).
- Using your results from parts (i), (ii) and (iii), find the Maclaurin series for \(\sin ^ { - 1 } 2 x\) up to and including the term in \(x ^ { 3 }\).