Inverse functions (inverse trig/hyperbolic)

Questions where the base function is an inverse trigonometric or inverse hyperbolic function (e.g., tan⁻¹(2x), sin⁻¹(2x), sech⁻¹(x+1/2), tanh⁻¹(x)), requiring implicit differentiation or chain rule with inverse function derivatives.

5 questions

CAIE Further Paper 2 2021 June Q7
7
  1. It is given that \(\mathrm { y } = \operatorname { sech } ^ { - 1 } \left( \mathrm { x } + \frac { 1 } { 2 } \right)\).
    Express cosh \(y\) in terms of \(x\) and hence show that \(\sinh y \frac { d y } { d x } = - \frac { 1 } { \left( x + \frac { 1 } { 2 } \right) ^ { 2 } }\).
  2. Find the first three terms in the Maclaurin's series for \(\operatorname { sech } ^ { - 1 } \left( x + \frac { 1 } { 2 } \right)\) in the form $$\ln a + b x + c x ^ { 2 }$$ where \(a\), \(b\) and \(c\) are constants to be determined.
OCR FP2 2016 June Q5
5 It is given that \(y = \tan ^ { - 1 } 2 x\).
  1. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) and show that \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 4 x \left( \frac { \mathrm {~d} y } { \mathrm {~d} x } \right) ^ { 2 } = 0\).
  2. Find the Maclaurin series for \(y\) up to and including the term in \(x ^ { 3 }\). Show all your working.
  3. The result in part (ii), together with the value \(x = \frac { 1 } { 2 }\), is used to find an estimate for \(\pi\). Show that this estimate is only correct to 1 significant figure.
OCR FP2 2015 June Q5
5 It is given that \(y = \sin ^ { - 1 } 2 x\).
  1. Using the derivative of \(\sin ^ { - 1 } x\) given in the List of Formulae (MF1), find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\).
  2. Show that \(\left( 1 - 4 x ^ { 2 } \right) \frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } = 4 x \frac { \mathrm {~d} y } { \mathrm {~d} x }\).
  3. Hence show that \(\left( 1 - 4 x ^ { 2 } \right) \frac { \mathrm { d } ^ { 3 } y } { \mathrm {~d} x ^ { 3 } } - 12 x \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } - 4 \frac { \mathrm {~d} y } { \mathrm {~d} x } = 0\).
  4. Using your results from parts (i), (ii) and (iii), find the Maclaurin series for \(\sin ^ { - 1 } 2 x\) up to and including the term in \(x ^ { 3 }\).
Edexcel CP2 2024 June Q2
2. $$f ( x ) = \tanh ^ { - 1 } \left( \frac { 3 - x } { 6 + x } \right) \quad | x | < \frac { 3 } { 2 }$$
  1. Show that $$f ^ { \prime } ( x ) = - \frac { 1 } { 2 x + 3 }$$
  2. Hence determine \(\mathrm { f } ^ { \prime \prime } ( x )\)
  3. Hence show that the Maclaurin series for \(\mathrm { f } ( x )\), up to and including the term in \(x ^ { 2 }\), is $$\ln p + q x + r x ^ { 2 }$$ where \(p , q\) and \(r\) are constants to be determined.
SPS SPS FM Pure 2020 February Q2
2
  1. Given that $$f ( x ) = \tan ^ { - 1 } ( x + 1 )$$ find \(f ( 0 )\) and \(f ^ { \prime } ( 0 )\), and show that \(f ^ { \prime \prime } ( 0 ) = - \frac { 1 } { 2 }\).
  2. Hence find the first three terms in the Maclaurin series for \(f ( x )\)