OCR FP2 2015 June — Question 4

Exam BoardOCR
ModuleFP2 (Further Pure Mathematics 2)
Year2015
SessionJune
TopicReduction Formulae

4 It is given that \(I _ { n } = \int _ { 0 } ^ { 1 } x ^ { n } \mathrm { e } ^ { - x } \mathrm {~d} x\) for \(n \geqslant 0\).
  1. Show that \(I _ { n } = n I _ { n - 1 } + k\) for \(n \geqslant 1\), where \(k\) is a constant to be determined.
  2. Find the exact value of \(I _ { 3 }\).
  3. Find the exact value of \(990 I _ { 8 } - I _ { 11 }\).