2 It is given that \(\mathrm { f } ( x ) = \ln ( 1 + \sin x )\). Using standard series, find the Maclaurin series for \(\mathrm { f } ( x )\) up to and including the term in \(x ^ { 3 }\).
6 It is given that the equation \(3 x ^ { 3 } + 5 x ^ { 2 } - x - 1 = 0\) has three roots, one of which is positive.
Show that the Newton-Raphson iterative formula for finding this root can be written
$$x _ { n + 1 } = \frac { 6 x _ { n } ^ { 3 } + 5 x _ { n } ^ { 2 } + 1 } { 9 x _ { n } ^ { 2 } + 10 x _ { n } - 1 } .$$
A sequence of iterates \(x _ { 1 } , x _ { 2 } , x _ { 3 } , \ldots\) which will find the positive root is such that the magnitude of the error in \(x _ { 2 }\) is greater than the magnitude of the error in \(x _ { 1 }\). On the graph given in the Printed Answer Book, mark a possible position for \(x _ { 1 }\).
Apply the iterative formula in part (i) when the initial value is \(x _ { 1 } = - 1\). Describe the behaviour of the iterative sequence, illustrating your answer on the graph given in the Printed Answer Book.
A sequence of approximations to the positive root is given by \(x _ { 1 } , x _ { 2 } , x _ { 3 } , \ldots\). Successive differences \(x _ { r } - x _ { r - 1 } = d _ { r }\), where \(r \geqslant 2\), are such that \(d _ { r } \approx k \left( d _ { r - 1 } \right) ^ { 2 }\) where \(k\) is a constant. Show that \(d _ { 4 } \approx \frac { d _ { 3 } ^ { 3 } } { d _ { 2 } ^ { 2 } }\) and demonstrate this numerically when \(x _ { 1 } = 1\).
Find the value of the positive root correct to 5 decimal places.
9 The equation of a curve in polar coordinates is \(r = 2 \sin 3 \theta\) for \(0 \leqslant \theta \leqslant \frac { 1 } { 3 } \pi\).
Sketch the curve.
Find the area of the region enclosed by this curve.
By expressing \(\sin 3 \theta\) in terms of \(\sin \theta\), show that a cartesian equation for the curve is
$$\left( x ^ { 2 } + y ^ { 2 } \right) ^ { 2 } = 6 x ^ { 2 } y - 2 y ^ { 3 } .$$
\section*{END OF QUESTION PAPER}