OCR FP2 (Further Pure Mathematics 2) 2015 June

Question 1
View details
1 By first expressing \(\tanh y\) in terms of exponentials, prove that \(\tanh ^ { - 1 } x = \frac { 1 } { 2 } \ln \left( \frac { 1 + x } { 1 - x } \right)\).
Question 2
View details
2 It is given that \(\mathrm { f } ( x ) = \ln ( 1 + \sin x )\). Using standard series, find the Maclaurin series for \(\mathrm { f } ( x )\) up to and including the term in \(x ^ { 3 }\).
Question 3
View details
3 By first completing the square, find the exact value of \(\int _ { \frac { 1 } { 2 } } ^ { 1 } \frac { 1 } { \sqrt { 2 x - x ^ { 2 } } } \mathrm {~d} x\).
Question 4
View details
4 It is given that \(I _ { n } = \int _ { 0 } ^ { 1 } x ^ { n } \mathrm { e } ^ { - x } \mathrm {~d} x\) for \(n \geqslant 0\).
  1. Show that \(I _ { n } = n I _ { n - 1 } + k\) for \(n \geqslant 1\), where \(k\) is a constant to be determined.
  2. Find the exact value of \(I _ { 3 }\).
  3. Find the exact value of \(990 I _ { 8 } - I _ { 11 }\).
Question 5
View details
5 It is given that \(y = \sin ^ { - 1 } 2 x\).
  1. Using the derivative of \(\sin ^ { - 1 } x\) given in the List of Formulae (MF1), find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\).
  2. Show that \(\left( 1 - 4 x ^ { 2 } \right) \frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } = 4 x \frac { \mathrm {~d} y } { \mathrm {~d} x }\).
  3. Hence show that \(\left( 1 - 4 x ^ { 2 } \right) \frac { \mathrm { d } ^ { 3 } y } { \mathrm {~d} x ^ { 3 } } - 12 x \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } - 4 \frac { \mathrm {~d} y } { \mathrm {~d} x } = 0\).
  4. Using your results from parts (i), (ii) and (iii), find the Maclaurin series for \(\sin ^ { - 1 } 2 x\) up to and including the term in \(x ^ { 3 }\).
Question 6
View details
6 It is given that the equation \(3 x ^ { 3 } + 5 x ^ { 2 } - x - 1 = 0\) has three roots, one of which is positive.
  1. Show that the Newton-Raphson iterative formula for finding this root can be written $$x _ { n + 1 } = \frac { 6 x _ { n } ^ { 3 } + 5 x _ { n } ^ { 2 } + 1 } { 9 x _ { n } ^ { 2 } + 10 x _ { n } - 1 } .$$
  2. A sequence of iterates \(x _ { 1 } , x _ { 2 } , x _ { 3 } , \ldots\) which will find the positive root is such that the magnitude of the error in \(x _ { 2 }\) is greater than the magnitude of the error in \(x _ { 1 }\). On the graph given in the Printed Answer Book, mark a possible position for \(x _ { 1 }\).
  3. Apply the iterative formula in part (i) when the initial value is \(x _ { 1 } = - 1\). Describe the behaviour of the iterative sequence, illustrating your answer on the graph given in the Printed Answer Book.
  4. A sequence of approximations to the positive root is given by \(x _ { 1 } , x _ { 2 } , x _ { 3 } , \ldots\). Successive differences \(x _ { r } - x _ { r - 1 } = d _ { r }\), where \(r \geqslant 2\), are such that \(d _ { r } \approx k \left( d _ { r - 1 } \right) ^ { 2 }\) where \(k\) is a constant. Show that \(d _ { 4 } \approx \frac { d _ { 3 } ^ { 3 } } { d _ { 2 } ^ { 2 } }\) and demonstrate this numerically when \(x _ { 1 } = 1\).
  5. Find the value of the positive root correct to 5 decimal places.
Question 7
View details
7 It is given that \(\mathrm { f } ( x ) = \frac { x ^ { 2 } - 25 } { ( x - 1 ) ( x + 2 ) }\).
  1. Express \(\mathrm { f } ( x )\) in partial fractions.
  2. Write down the equations of the asymptotes of the curve \(y = \mathrm { f } ( x )\).
  3. Find the value of \(x\) where the graph of \(y = \mathrm { f } ( x )\) cuts the horizontal asymptote.
  4. Sketch the graph of \(y ^ { 2 } = \mathrm { f } ( x )\).
Question 8
View details
8 It is given that \(\mathrm { f } ( x ) = 2 \sinh x + 3 \cosh x\).
  1. Show that the curve \(y = \mathrm { f } ( x )\) has a stationary point at \(x = - \frac { 1 } { 2 } \ln 5\) and find the value of \(y\) at this point.
  2. Solve the equation \(\mathrm { f } ( x ) = 5\), giving your answers exactly. \section*{Question 9 begins on page 4.}
Question 9
View details
9 The equation of a curve in polar coordinates is \(r = 2 \sin 3 \theta\) for \(0 \leqslant \theta \leqslant \frac { 1 } { 3 } \pi\).
  1. Sketch the curve.
  2. Find the area of the region enclosed by this curve.
  3. By expressing \(\sin 3 \theta\) in terms of \(\sin \theta\), show that a cartesian equation for the curve is $$\left( x ^ { 2 } + y ^ { 2 } \right) ^ { 2 } = 6 x ^ { 2 } y - 2 y ^ { 3 } .$$ \section*{END OF QUESTION PAPER}