5.
\begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{15e3f7f2-a77c-4ee4-8f0a-ac739e9fede5-5_946_1498_210_287}
\captionsetup{labelformat=empty}
\caption{Figure 2}
\end{figure}
Figure 2 shows a sketch of the curve with equation \(y = \mathrm { f } ( x )\) where
$$f ( x ) = \frac { 4 ( x - 1 ) } { x ( x - 3 ) }$$
The curve cuts the \(x\)-axis at \(( a , 0 )\). The lines \(y = 0 , x = 0\) and \(x = b\) are asymptotes to the curve.
- Write down the value of \(a\) and the value of \(b\).
(2) - On separate axes, sketch the curves with the following equations. On your sketches, you should mark the coordinates of any intersections with the coordinate axes and state the equations of any asymptotes.
- \(y = \mathrm { f } ( x + 2 ) - 4\)
- \(y = \mathrm { f } ( | x | ) - 3\)