Sketch rational with linear numerator

Rational functions with linear numerator and linear denominator, typically having horizontal and vertical asymptotes found directly without division (e.g., y = (3x-1)/(x+2), y = (3x-5)/(2x+4)).

5 questions

Edexcel AEA 2017 June Q5
5. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{15e3f7f2-a77c-4ee4-8f0a-ac739e9fede5-5_946_1498_210_287} \captionsetup{labelformat=empty} \caption{Figure 2}
\end{figure} Figure 2 shows a sketch of the curve with equation \(y = \mathrm { f } ( x )\) where $$f ( x ) = \frac { 4 ( x - 1 ) } { x ( x - 3 ) }$$ The curve cuts the \(x\)-axis at \(( a , 0 )\). The lines \(y = 0 , x = 0\) and \(x = b\) are asymptotes to the curve.
  1. Write down the value of \(a\) and the value of \(b\).
    (2)
  2. On separate axes, sketch the curves with the following equations. On your sketches, you should mark the coordinates of any intersections with the coordinate axes and state the equations of any asymptotes.
    1. \(y = \mathrm { f } ( x + 2 ) - 4\)
    2. \(y = \mathrm { f } ( | x | ) - 3\)
AQA FP1 2007 June Q7
7 A curve has equation $$y = \frac { 3 x - 1 } { x + 2 }$$
  1. Write down the equations of the two asymptotes to the curve.
  2. Sketch the curve, indicating the coordinates of the points where the curve intersects the coordinate axes.
  3. Hence, or otherwise, solve the inequality $$0 < \frac { 3 x - 1 } { x + 2 } < 3$$
AQA FP1 2010 January Q7
7 A curve \(C\) has equation \(y = \frac { 1 } { ( x - 2 ) ^ { 2 } }\).
    1. Write down the equations of the asymptotes of the curve \(C\).
    2. Sketch the curve \(C\).
  1. The line \(y = x - 3\) intersects the curve \(C\) at a point which has \(x\)-coordinate \(\alpha\).
    1. Show that \(\alpha\) lies within the interval \(3 < x < 4\).
    2. Starting from the interval \(3 < x < 4\), use interval bisection twice to obtain an interval of width 0.25 within which \(\alpha\) must lie.
AQA Further AS Paper 1 2020 June Q10
10
  1. Show that the equation $$y = \frac { 3 x - 5 } { 2 x + 4 }$$ can be written in the form $$( x + a ) ( y + b ) = c$$ where \(a\), \(b\) and \(c\) are integers to be found.
    10
  2. Write down the equations of the asymptotes of the graph of $$y = \frac { 3 x - 5 } { 2 x + 4 }$$ 10
  3. Sketch, on the axes provided, the graph of $$y = \frac { 3 x - 5 } { 2 x + 4 }$$
    \includegraphics[max width=\textwidth, alt={}]{86aa9e6f-261c-40d4-8271-a0dc560d8a72-15_1104_1115_1439_466}
AQA Further AS Paper 1 2022 June Q13
13
  1. Write down the equations of the asymptotes of curve \(C _ { 1 }\) 13 A curve \(C _ { 1 }\) has equation 13
  2. On the axes below, sketch the graph of curve \(C _ { 1 }\)
    Indicate the values of the intercepts of the curve with the axes.
    \includegraphics[max width=\textwidth, alt={}, center]{fd9715c4-9ce1-4608-aed6-f3d4f71208b5-20_885_898_1192_571} 13
  3. Hence, or otherwise, solve the inequality $$\frac { 2 x + 7 } { 3 x + 5 } \geq 0$$ 13
  4. Curve \(C _ { 2 }\) is a reflection of curve \(C _ { 1 }\) in the line \(y = - x\)
    Find an equation for curve \(C _ { 2 }\) in the form \(y = \mathrm { f } ( x )\)