7.
\begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{15e3f7f2-a77c-4ee4-8f0a-ac739e9fede5-7_583_1198_217_440}
\captionsetup{labelformat=empty}
\caption{Figure 3}
\end{figure}
Figure 3 shows part of the curve \(C\) with equation \(y = x ^ { 4 } - 10 x ^ { 3 } + 33 x ^ { 2 } - 34 x\) and the line \(L\) with equation \(y = m x + c\) .
The line \(L\) touches \(C\) at the points \(P\) and \(Q\) with \(x\) coordinates \(p\) and \(q\) respectively.
(a)Explain why
$$x ^ { 4 } - 10 x ^ { 3 } + 33 x ^ { 2 } - ( 34 + m ) x - c = ( x - p ) ^ { 2 } ( x - q ) ^ { 2 }$$
The finite region \(R\) ,shown shaded in Figure 3,is bounded by \(C\) and \(L\) .
(b)Use integration by parts to show that the area of \(R\) is \(\frac { ( q - p ) ^ { 5 } } { 30 }\)
(c)Show that
$$( x - p ) ^ { 2 } ( x - q ) ^ { 2 } = x ^ { 4 } - 2 ( p + q ) x ^ { 3 } + S x ^ { 2 } - T x + U$$
where \(S , T\) and \(U\) are expressions to be found in terms of \(p\) and \(q\) .
(d)Using part(a)and part(c)find the value of \(p\) ,the value of \(q\) and the equation of \(L\) .