Edexcel AEA 2017 June — Question 4

Exam BoardEdexcel
ModuleAEA (Advanced Extension Award)
Year2017
SessionJune
TopicCircles

4. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{15e3f7f2-a77c-4ee4-8f0a-ac739e9fede5-4_332_454_201_810} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} Figure 1 shows the equilateral triangle \(L M N\) of side 2 cm .The point \(P\) lies on \(L M\) such that \(L P = x \mathrm {~cm}\) and the point \(Q\) lies on \(L N\) such that \(L Q = y \mathrm {~cm}\) .The points \(P\) and \(Q\) are chosen so that the area of triangle \(L P Q\) is half the area of triangle \(L M N\) .
(a)Show that \(x y = 2\)
(b)Find the shortest possible length of \(P Q\) ,justifying your answer. Mathematicians know that for any closed curve or polygon enclosing a fixed area,the ratio \(\frac { \text { area enclosed } } { \text { perimeter } }\) is a maximum when the closed curve is a circle. By considering 6 copies of triangle \(L M N\) suitably arranged,
(c)find the length of the shortest line or curve that can be drawn from a point on \(L M\) to a point on \(L N\) to divide the area of triangle \(L M N\) in half.Justify your answer.
(6)