| Exam Board | Edexcel |
| Module | AEA (Advanced Extension Award) |
| Year | 2017 |
| Session | June |
| Topic | Integration using inverse trig and hyperbolic functions |
6.(a)Show that
$$\frac { \mathrm { d } } { \mathrm {~d} u } \ln \left( u + \sqrt { u ^ { 2 } - 1 } \right) = \frac { 1 } { \sqrt { u ^ { 2 } - 1 } }$$
(b)Use the result from part(a)and the substitution \(x + 3 = \frac { 1 } { t }\) to find
$$\int \frac { 1 } { ( x + 3 ) \sqrt { 2 x + 7 } } \mathrm {~d} x$$
(6)
(c)Express \(\frac { 1 } { 2 x ^ { 2 } + 13 x + 21 }\) in partial fractions.
(d)Find
$$\int _ { 1 } ^ { 9 } \frac { 1 } { \left( 2 x ^ { 2 } + 13 x + 21 \right) \sqrt { 2 x + 7 } } \mathrm {~d} x$$
giving your answer in the form \(\ln r - s\) where \(r\) and \(s\) are rational numbers.