| Exam Board | Edexcel |
| Module | AEA (Advanced Extension Award) |
| Year | 2012 |
| Session | June |
| Topic | Vectors: Cross Product & Distances |
4.
$$\mathbf { a } = \left( \begin{array} { r }
- 3
1
4
\end{array} \right) , \quad \mathbf { b } = \left( \begin{array} { r }
5
- 2
9
\end{array} \right) , \quad \mathbf { c } = \left( \begin{array} { r }
8
- 4
3
\end{array} \right)$$
The points \(A , B\) and \(C\) with position vectors \(\mathbf { a } , \mathbf { b }\) and \(\mathbf { c }\) ,respectively,are 3 vertices of a cube.
(a)Find the volume of the cube.
The points \(P , Q\) and \(R\) are vertices of a second cube with \(\overrightarrow { P Q } = \left( \begin{array} { l } 3
4
\alpha \end{array} \right) , \overrightarrow { P R } = \left( \begin{array} { l } 7
1
0 \end{array} \right)\) and \(\alpha\) a positive constant.
(b)Given that angle \(Q P R = 60 ^ { \circ }\) ,find the value of \(\alpha\) .
(c)Find the length of a diagonal of the second cube.