Edexcel AEA 2012 June — Question 4

Exam BoardEdexcel
ModuleAEA (Advanced Extension Award)
Year2012
SessionJune
TopicVectors: Cross Product & Distances

4. $$\mathbf { a } = \left( \begin{array} { r } - 3
1
4 \end{array} \right) , \quad \mathbf { b } = \left( \begin{array} { r } 5
- 2
9 \end{array} \right) , \quad \mathbf { c } = \left( \begin{array} { r } 8
- 4
3 \end{array} \right)$$ The points \(A , B\) and \(C\) with position vectors \(\mathbf { a } , \mathbf { b }\) and \(\mathbf { c }\) ,respectively,are 3 vertices of a cube.
(a)Find the volume of the cube. The points \(P , Q\) and \(R\) are vertices of a second cube with \(\overrightarrow { P Q } = \left( \begin{array} { l } 3
4
\alpha \end{array} \right) , \overrightarrow { P R } = \left( \begin{array} { l } 7
1
0 \end{array} \right)\) and \(\alpha\) a positive constant.
(b)Given that angle \(Q P R = 60 ^ { \circ }\) ,find the value of \(\alpha\) .
(c)Find the length of a diagonal of the second cube.