Find constants from sketch features

Questions showing a sketch with marked features (intercepts, turning points) where students must determine unknown constants in a partially given polynomial equation.

4 questions

Edexcel C1 2013 June Q9
9. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{cfc23548-bf4f-4efa-9ceb-b8d03bb1f019-13_698_1413_118_280} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} Figure 1 shows a sketch of the curve \(C\) with equation \(y = \mathrm { f } ( x )\).
The curve \(C\) passes through the point \(( - 1,0 )\) and touches the \(x\)-axis at the point \(( 2,0 )\).
The curve \(C\) has a maximum at the point ( 0,4 ).
  1. The equation of the curve \(C\) can be written in the form $$y = x ^ { 3 } + a x ^ { 2 } + b x + c$$ where \(a\), \(b\) and \(c\) are integers.
    Calculate the values of \(a , b\) and \(c\).
  2. Sketch the curve with equation \(y = \mathrm { f } \left( \frac { 1 } { 2 } x \right)\) in the space provided on page 24 Show clearly the coordinates of all the points where the curve crosses or meets the coordinate axes.
Edexcel P3 2021 January Q2
2. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{624e9e2f-b6b8-47ce-accc-31dcd5f0554e-04_903_1148_123_399} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} Figure 1 shows a sketch of the curve with equation \(y = \mathrm { f } ( x )\), where \(x \in \mathbb { R }\) and \(\mathrm { f } ( x )\) is a polynomial. The curve passes through the origin and touches the \(x\)-axis at the point \(( 3,0 )\) There is a maximum turning point at \(( 1,2 )\) and a minimum turning point at \(( 3,0 )\) On separate diagrams, sketch the curve with equation
  1. \(y = 3 f ( 2 x )\)
  2. \(y = \mathrm { f } ( - x ) - 1\) On each sketch, show clearly the coordinates of
    • the point where the curve crosses the \(y\)-axis
    • any maximum or minimum turning points
Edexcel AEA 2012 June Q6
6. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{fc5d0d07-b750-4646-bdcb-419a290200c9-4_433_1011_221_529} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} Figure 1 shows a sketch of the curve with equation \(y = ( x + a ) ( x - b ) ^ { 2 }\), where \(a\) and \(b\) are positive constants. The curve cuts the \(x\)-axis at \(P\) and has a maximum point at \(S\) and a minimum point at \(Q\).
  1. Write down the coordinates of \(P\) and \(Q\) in terms of \(a\) and \(b\).
  2. Show that \(G\), the area of the shaded region between the curve \(P S Q\) and the \(x\)-axis, is given by \(G = \frac { ( a + b ) ^ { 4 } } { 12 }\). The rectangle \(P Q R S T\) has \(R S T\) parallel to \(Q P\) and both \(P T\) and \(Q R\) are parallel to the \(y\)-axis.
  3. Show that \(\frac { G } { \text { Area of } P Q R S T } = k\), where \(k\) is a constant independent of \(a\) and \(b\) and find the value of \(k\).
OCR MEI C2 2008 June Q11
11 \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{a2188eac-08f7-4e75-a76d-fe35b13a2e5f-4_1022_942_356_603} \captionsetup{labelformat=empty} \caption{Fig. 11}
\end{figure} Fig. 11 shows a sketch of the cubic curve \(y = \mathrm { f } ( x )\). The values of \(x\) where it crosses the \(x\)-axis are - 5 , - 2 and 2 , and it crosses the \(y\)-axis at \(( 0 , - 20 )\).
  1. Express \(\mathrm { f } ( x )\) in factorised form.
  2. Show that the equation of the curve may be written as \(y = x ^ { 3 } + 5 x ^ { 2 } - 4 x - 20\).
  3. Use calculus to show that, correct to 1 decimal place, the \(x\)-coordinate of the minimum point on the curve is 0.4 . Find also the coordinates of the maximum point on the curve, giving your answers correct to 1 decimal place.
  4. State, correct to 1 decimal place, the coordinates of the maximum point on the curve \(y = \mathrm { f } ( 2 x )\). \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{a2188eac-08f7-4e75-a76d-fe35b13a2e5f-5_689_1006_269_568} \captionsetup{labelformat=empty} \caption{Fig. 12}
    \end{figure} A water trough is a prism 2.5 m long. Fig. 12 shows the cross-section of the trough, with the depths in metres at 0.1 m intervals across the trough. The trough is full of water.
  5. Use the trapezium rule with 5 strips to calculate an estimate of the area of cross-section of the trough. Hence estimate the volume of water in the trough.
  6. A computer program models the curve of the base of the trough, with axes as shown and units in metres, using the equation \(y = 8 x ^ { 3 } - 3 x ^ { 2 } - 0.5 x - 0.15\), for \(0 \leqslant x \leqslant 0.5\). Calculate \(\int _ { 0 } ^ { 0.5 } \left( 8 x ^ { 3 } - 3 x ^ { 2 } - 0.5 x - 0.15 \right) \mathrm { d } x\) and state what this represents.
    Hence find the volume of water in the trough as given by this model.