Edexcel AEA (Advanced Extension Award) 2010 June

Question 1
View details
1.(a)Solve the equation $$\sqrt { } ( 3 x + 16 ) = 3 + \sqrt { } ( x + 1 )$$ (b)Solve the equation $$\log _ { 3 } ( x - 7 ) - \frac { 1 } { 2 } \log _ { 3 } x = 1 - \log _ { 3 } 2$$
Question 2
View details
2.The sum of the first \(p\) terms of an arithmetic series is \(q\) and the sum of the first \(q\) terms of the same arithmetic series is \(p\) ,where \(p\) and \(q\) are positive integers and \(p \neq q\) . Giving simplified answers in terms of \(p\) and \(q\) ,find
(a)the common difference of the terms in this series,
(b)the first term of the series,
(c)the sum of the first \(( p + q )\) terms of the series.
Question 3
View details
3.The curve \(C\) has equation $$x ^ { 2 } + y ^ { 2 } + f x y = g ^ { 2 }$$ where \(f\) and \(g\) are constants and \(g \neq 0\) .
(a)Find an expression in terms of \(\alpha , \beta\) and \(f\) for the gradient of \(C\) at the point \(( \alpha , \beta )\) . Given that \(f < 2\) and \(f \neq - 2\) and that the gradient of \(C\) at the point \(( \alpha , \beta )\) is 1 ,
(b)show that \(\alpha = - \beta = \frac { \pm g } { \sqrt { } ( 2 - f ) }\) . Given that \(f = - 2\) ,
(c)sketch \(C\) .
Question 4
View details
4. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{0396f61a-b844-40ed-98d1-82ee2d8a6807-3_643_332_246_870} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} Figure 1 shows a cuboid \(O A B C D E F G\), where \(O\) is the origin, \(A\) has position vector \(5 \mathbf { i } , C\) has position vector \(10 \mathbf { j }\) and \(D\) has position vector \(20 \mathbf { k }\).
  1. Find the cosine of angle \(C A F\). Given that the point \(X\) lies on \(A C\) and that \(F X\) is perpendicular to \(A C\),
  2. find the position vector of point \(X\) and the distance \(F X\). The line \(l _ { 1 }\) passes through \(O\) and through the midpoint of the face \(A B F E\). The line \(l _ { 2 }\) passes through \(A\) and through the midpoint of the edge \(F G\).
  3. Show that \(l _ { 1 }\) and \(l _ { 2 }\) intersect and find the coordinates of the point of intersection.
Question 5
View details
5. $$I = \int \frac { 1 } { ( x - 1 ) \sqrt { } \left( x ^ { 2 } - 1 \right) } \mathrm { d } x , \quad x > 1$$ (a)Use the substitution \(x = 1 + u ^ { - 1 }\) to show that $$I = - \left( \frac { x + 1 } { x - 1 } \right) ^ { \frac { 1 } { 2 } } + c$$ (b)Hence show that $$\int _ { \sec \alpha } ^ { \sec \beta } \frac { 1 } { ( x - 1 ) \sqrt { } \left( x ^ { 2 } - 1 \right) } \mathrm { d } x = \cot \left( \frac { \alpha } { 2 } \right) - \cot \left( \frac { \beta } { 2 } \right) , \quad 0 < \alpha < \beta < \frac { \pi } { 2 }$$
Question 6
View details
6.(a)Given that \(x ^ { 4 } + y ^ { 4 } = 1\) ,prove that \(x ^ { 2 } + y ^ { 2 }\) is a maximum when \(x = \pm y\) ,and find the maximum and minimum values of \(x ^ { 2 } + y ^ { 2 }\) .
(b)On the same diagram,sketch the curves \(C _ { 1 }\) and \(C _ { 2 }\) with equations \(x ^ { 4 } + y ^ { 4 } = 1\) and \(x ^ { 2 } + y ^ { 2 } = 1\) respectively.
(c)Write down the equation of the circle \(C _ { 3 }\) ,centre the origin,which touches the curve \(C _ { 1 }\) at the points where \(x = \pm y\) .
Question 7
View details
7. $$\mathrm { f } ( x ) = \left[ 1 + \cos \left( x + \frac { \pi } { 4 } \right) \right] \left[ 1 + \sin \left( x + \frac { \pi } { 4 } \right) \right] , \quad 0 \leqslant x \leqslant 2 \pi$$
  1. Show that \(\mathrm { f } ( x )\) may be written in the form $$f ( x ) = \left( \frac { 1 } { \sqrt { 2 } } + \cos x \right) ^ { 2 } , \quad 0 \leqslant x \leqslant 2 \pi$$
  2. Find the range of the function \(\mathrm { f } ( x )\). The graph of \(y = \mathrm { f } ( x )\) is shown in Figure 2. \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{0396f61a-b844-40ed-98d1-82ee2d8a6807-5_426_938_849_591} \captionsetup{labelformat=empty} \caption{Figure 2}
    \end{figure}
  3. Find the coordinates of all the maximum and minimum points on this curve. \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{0396f61a-b844-40ed-98d1-82ee2d8a6807-5_432_942_1535_589} \captionsetup{labelformat=empty} \caption{Figure 3}
    \end{figure} The region \(R\), bounded by \(y = 2\) and \(y = \mathrm { f } ( x )\), is shown shaded in Figure 3.
  4. Find the area of \(R\).