Implicit differential equation series solution

The differential equation is given in implicit form (e.g., y·d²y/dx² + (dy/dx)² + y = 0 or (1+x²)·d²y/dx² + x·dy/dx = y), requiring algebraic manipulation to find successive derivatives.

6 questions

Edexcel FP2 2002 June Q10
10. $$y \frac { d ^ { 2 } y } { d x ^ { 2 } } + \left( \frac { d y } { d x } \right) ^ { 2 } + y = 0$$
  1. Find an expression for \(\frac { \mathrm { d } ^ { 3 } y } { \mathrm {~d} x ^ { 3 } }\). Given that \(y = 1\) and \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 1\) at \(x = 0\),
  2. find the series solution for \(y\), in ascending powers of \(x\), up to an including the term in \(x ^ { 3 }\).
  3. Comment on whether it would be sensible to use your series solution to give estimates for \(y\) at \(x = 0.2\) and at \(x = 50\).
Edexcel FP2 2005 June Q11
11. The variable \(y\) satisfies the differential equation $$4 \left( 1 + x ^ { 2 } \right) \frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 4 x \frac { \mathrm {~d} y } { \mathrm {~d} x } = y$$ At \(x = 0 , y = 1\) and \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 1 } { 2 }\).
  1. Find the value of \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\) at \(x = 0\).
    (1) (c) Find the value of \(\frac { \mathrm { d } ^ { 3 } y } { \mathrm {~d} x ^ { 3 } }\) at \(x = 0\)
  2. Express \(y\) as a series, in ascending powers of \(x\), up to and including the term in \(x ^ { 3 }\).
  3. Find the value that the series gives for \(y\) at \(x = 0.1\), giving your answer to 5 decimal places.
    (1)(Total 14 marks)
Edexcel FP2 2007 June Q10
10. $$\left( 1 - x ^ { 2 } \right) \frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } - x \frac { \mathrm {~d} y } { \mathrm {~d} x } + 2 y = 0$$ At \(x = 0 , y = 2\) and \(\frac { \mathrm { d } y } { \mathrm {~d} x } = - 1\).
  1. Find the value of \(\frac { \mathrm { d } ^ { 3 } y } { \mathrm {~d} x ^ { 3 } }\) at \(x = 0\).
  2. Express \(y\) as a series in ascending powers of \(x\), up to and including the term in \(x ^ { 3 }\).
    (Total 7 marks)
Edexcel FP2 2013 June Q4
  1. Given that
$$y \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + \left( \frac { \mathrm { d } y } { \mathrm {~d} x } \right) ^ { 2 } + 5 y = 0$$
  1. find \(\frac { \mathrm { d } ^ { 3 } y } { \mathrm {~d} x ^ { 3 } }\) in terms of \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } , \frac { \mathrm {~d} y } { \mathrm {~d} x }\) and \(y\). Given that \(y = 2\) and \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 2\) at \(x = 0\)
  2. find a series solution for \(y\) in ascending powers of \(x\), up to and including the term in \(x ^ { 3 }\).
Edexcel FP2 2018 June Q5
5. $$y \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 3 x \frac { \mathrm {~d} y } { \mathrm {~d} x } - 3 y ^ { 2 } = 0$$ Given that at \(x = 0 , y = 2\) and \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 1\)
  1. show that, at \(x = 0 , \frac { \mathrm {~d} ^ { 3 } y } { \mathrm {~d} x ^ { 3 } } = \frac { 3 } { 2 }\)
  2. Find a series solution for \(y\) up to and including the term in \(x ^ { 3 }\)
Edexcel FP1 2024 June Q4
4. $$\left[ \begin{array} { l } \text { The Taylor series expansion of } \mathrm { f } ( x ) \text { about } x = a \text { is given by }
\mathrm { f } ( x ) = \mathrm { f } ( a ) + ( x - a ) \mathrm { f } ^ { \prime } ( a ) + \frac { ( x - a ) ^ { 2 } } { 2 ! } \mathrm { f } ^ { \prime \prime } ( a ) + \ldots + \frac { ( x - a ) ^ { r } } { r ! } \mathrm { f } ^ { ( r ) } ( a ) + \ldots \end{array} \right]$$ The curve with equation \(y = \mathrm { f } ( x )\) satisfies the differential equation $$\cos x \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + y ^ { 2 } \frac { \mathrm {~d} y } { \mathrm {~d} x } + \sin x = 0$$ Given that \(\left( \frac { \pi } { 4 } , 1 \right)\) is a stationary point of the curve,
  1. determine the nature of this stationary point, giving a reason for your answer.
  2. Show that \(\frac { \mathrm { d } ^ { 3 } y } { \mathrm {~d} x ^ { 3 } } = \sqrt { 2 } - 2\) at this stationary point.
  3. Hence determine a series solution for \(y\), in ascending powers of \(\left( x - \frac { \pi } { 4 } \right)\) up to and including the term in \(\left( x - \frac { \pi } { 4 } \right) ^ { 3 }\), giving each coefficient in simplest form.