| Exam Board | Edexcel |
| Module | FP2 (Further Pure Mathematics 2) |
| Year | 2005 |
| Session | June |
| Topic | Complex numbers 2 |
10. (a) Given that \(z = e ^ { \mathrm { i } \theta }\), show that
$$z ^ { n } - \frac { 1 } { z ^ { n } } = 2 \mathrm { i } \sin n \theta$$
where \(n\) is a positive integer.
(b) Show that
$$\sin ^ { 5 } \theta = \frac { 1 } { 16 } ( \sin 5 \theta - 5 \sin 3 \theta + 10 \sin \theta )$$
(c) Hence solve, in the interval \(0 \leq \theta < 2 \pi\),
$$\sin 5 \theta - 5 \sin 3 \theta + 6 \sin \theta = 0$$
(5)(Total 12 marks)