4.
\begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{cfad960a-f56a-4471-b4ad-92ab670d8121-05_791_874_265_518}
\captionsetup{labelformat=empty}
\caption{Figure 1}
\end{figure}
Figure 1 shows a sketch of part of the parabola with equation \(y ^ { 2 } = 12 x\).
The point \(P\) on the parabola has \(x\)-coordinate \(\frac { 1 } { 3 }\).
The point \(S\) is the focus of the parabola.
- Write down the coordinates of \(S\).
The points \(A\) and \(B\) lie on the directrix of the parabola.
The point \(A\) is on the \(x\)-axis and the \(y\)-coordinate of \(B\) is positive.
Given that \(A B P S\) is a trapezium, - calculate the perimeter of \(A B P S\).