Questions providing a partial probability distribution with one unknown constant (or multiple unknowns with a simple relationship) and asking to find it using only the constraint that probabilities sum to 1.
35 questions
| \(x\) | 0 | 1 | 2 | 3 | 4 |
| \(\mathrm { P } ( X = x )\) | 0.26 | \(q\) | \(3 q\) | 0.05 | 0.09 |
| \(x\) | 0 | 1 | 2 | 3 | 4 | \(\geqslant 5\) |
| \(\mathrm { P } ( X = x )\) | 0.24 | 0.35 | \(2 k\) | \(k\) | 0.05 | 0 |
| \(x\) | - 1 | 0 | 1 | 2 | 4 |
| \(\mathrm { P } ( X = x )\) | \(p\) | \(p\) | \(2 p\) | \(2 p\) | 0.1 |
| \(x\) | - 1 | 0 | 1 | 2 | 4 |
| \(\mathrm { P } ( X = x )\) | \(\frac { 1 } { 4 }\) | \(p\) | \(p\) | \(\frac { 3 } { 8 }\) | \(4 p\) |
| \(x\) | - 2 | - 1 | 0 | 1 | 2 |
| \(\mathrm { P } ( X = x )\) | \(\frac { 1 } { 4 }\) | \(\frac { 1 } { 5 }\) | \(k\) | \(\frac { 2 } { 5 }\) | \(\frac { 1 } { 10 }\) |
| \(x\) | 0 | 1 | 2 | 3 |
| \(\mathrm { P } ( X = x )\) | \(\frac { 3 } { 10 }\) | \(\frac { 1 } { 5 }\) | \(\frac { 2 } { 5 }\) |
| \(r\) | 0 | 1 | 2 | 3 | 4 |
| \(\mathrm { P } ( X = r )\) | \(p\) | 0.1 | 0.05 | 0.05 | 0.25 |
| \(x\) | 1 | 2 | 3 | 4 |
| \(\mathrm { P } ( X = x )\) | 0.1 | 0.3 | \(2 p\) | \(p\) |
| \(r\) | 0 | 1 | 2 | 3 | 4 |
| \(\mathrm { P } ( X = r )\) | \(p\) | 0.1 | 0.05 | 0.05 | 0.25 |
| \(x\) | 6 | 7 | 8 | 10 |
| \(\mathrm { P } ( X = x )\) | 0.5 | 0.2 | \(q\) | \(q\) |
| \(d\) | 10 | 20 | 30 | 40 | 50 |
| \(\mathrm { P } ( D = d )\) | \(\frac { k } { 10 }\) | \(\frac { k } { 20 }\) | \(\frac { k } { 30 }\) | \(\frac { k } { 40 }\) | \(\frac { k } { 50 }\) |
| \(x\) | \(a\) | \(b\) | \(c\) |
| \(\mathrm { P } ( X = x )\) | \(\log _ { 36 } a\) | \(\log _ { 36 } b\) | \(\log _ { 36 } c\) |
| \(x\) | 0 | 2 | 4 | 6 |
| \(\mathrm { P } ( X = x )\) | \(\frac { 3 } { 8 }\) | \(\frac { 5 } { 16 }\) | \(4 p\) | \(p\) |
| \(x\) | 1 | 2 | 3 | 4 | 5 |
| \(\mathrm { P } ( \mathrm { X } = \mathrm { x } )\) | 0.2 | 0.15 | \(a\) | 0.27 | 0.14 |
| \(x\) | 1 | 2 | 3 | 4 | 5 |
| \(\mathrm { P } ( \mathrm { X } = \mathrm { x } )\) | 0.1 | 0.3 | \(q\) | \(2 q\) | \(3 q\) |
| \(x\) | 0 | 1 | 2 | 3 |
| \(\mathrm { P } ( X = x )\) | \(3 p ^ { 2 }\) | \(0.5 p ^ { 2 } + 2 p\) | \(1.5 p\) | \(1.5 p ^ { 2 } + 0.5 p\) |
| \(x\) | 1 | 2 | 3 | 4 | 5 |
| \(\mathrm { P } ( X = x )\) | 0.2 | 0.1 | \(k\) | \(2 k\) | \(4 k\) |
| \(x\) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| \(\mathrm { P } ( X = x )\) | \(p\) | \(p\) | \(p\) | \(p\) | \(p\) | \(p\) | \(p\) | \(3 p\) |
| \(x\) | 0 | 1 | 2 | 3 |
| \(\mathrm { P } ( \mathrm { X } = \mathrm { x } )\) | 0.2 | \(a\) | \(3 a\) | 0.4 |
| \(x\) | - 2 | - 1 | 0 | 1 | 2 | 3 |
| \(\mathrm { P } ( X = x )\) | 0.1 | \(\alpha\) | 0.3 | 0.2 | 0.1 | 0.1 |
| \(x\) | - 1 | 0 | 1 | 2 | 3 |
| \(\mathrm { P } ( X = x )\) | \(\frac { 1 } { 5 }\) | \(a\) | \(\frac { 1 } { 10 }\) | \(a\) | \(\frac { 1 } { 5 }\) |
| \(s\) | 0 | 1 | 2 | 4 | 5 |
| \(\mathrm { P } ( S = s )\) | \(p\) | 0.25 | 0.25 | 0.20 | 0.20 |
| \(x\) | - 4 | - 2 | 1 | 3 | 5 |
| \(\mathrm { P } ( X = x )\) | 0.4 | \(p\) | 0.05 | 0.15 | \(p\) |