Questions providing a partial probability distribution with one unknown constant (or multiple unknowns with a simple relationship) and asking to find it using only the constraint that probabilities sum to 1.
35 questions
| \(x\) | 0 | 1 | 2 | 3 | 4 | 5 |
| \(\mathrm { P } ( X = x )\) | 0.11 | 0.17 | 0.2 | 0.13 | \(p\) | \(p ^ { 2 }\) |
| \(x\) | 1 | 2 | 3 | 4 | 5 |
| \(\mathrm { P } ( X = x )\) | 0.1 | 0.35 | \(k\) | 0.15 | \(k\) |
| \(x\) | \(k\) | \(k + 4\) | \(2 k\) |
| \(\mathrm { P } ( X = x )\) | \(\frac { 1 } { 8 }\) | \(\frac { 3 } { 8 }\) | \(\frac { 1 } { 2 }\) |
| \(\boldsymbol { x }\) | 1 | 2 | 3 | 4 | 5 | 6 | \(\geqslant 7\) |
| \(\mathbf { P } ( \boldsymbol { X } = \boldsymbol { x } )\) | 0.01 | 0.05 | 0.14 | 0.30 | \(k\) | 0.12 | 0 |
| \(x\) | 0 | 1 | 2 | 3 |
| \(\mathrm { P } ( \mathrm { X } = \mathrm { x } )\) | \(2 c\) | \(3 c\) | \(0.5 - c\) | \(c\) |
| \(x\) | 0 | 2 | 100 | 1000 |
| \(\mathrm { P } ( X = x )\) | 0.9 | 0.09 | \(p\) | 0.0001 |
| \(w\) | 1 | 2 | 3 | 4 |
| \(\mathrm { P } ( W = w )\) | 0.25 | 0.36 | \(x\) | \(x ^ { 2 }\) |
| \(\boldsymbol { x }\) | 0 | 1 | 2 | 3 | 4 or more |
| \(\mathbf { P } ( \boldsymbol { X } = \boldsymbol { x } )\) | 0.35 | 0.25 | \(k\) | 0.14 | 0.1 |
| \(\boldsymbol { x }\) | 0 | 1 | 2 | 3 | 4 | 5 or more |
| \(\mathbf { P } ( \boldsymbol { X } = \boldsymbol { x } )\) | 0.03 | 0.15 | 0.22 | 0.31 | 0.09 | \(p\) |