Edexcel Paper 3 2020 October — Question 4

Exam BoardEdexcel
ModulePaper 3 (Paper 3)
Year2020
SessionOctober
TopicDiscrete Probability Distributions
TypeOne unknown from sum constraint only

  1. The discrete random variable \(D\) has the following probability distribution
\(d\)1020304050
\(\mathrm { P } ( D = d )\)\(\frac { k } { 10 }\)\(\frac { k } { 20 }\)\(\frac { k } { 30 }\)\(\frac { k } { 40 }\)\(\frac { k } { 50 }\)
where \(k\) is a constant.
  1. Show that the value of \(k\) is \(\frac { 600 } { 137 }\) The random variables \(D _ { 1 }\) and \(D _ { 2 }\) are independent and each have the same distribution as \(D\).
  2. Find \(\mathrm { P } \left( D _ { 1 } + D _ { 2 } = 80 \right)\) Give your answer to 3 significant figures. A single observation of \(D\) is made.
    The value obtained, \(d\), is the common difference of an arithmetic sequence.
    The first 4 terms of this arithmetic sequence are the angles, measured in degrees, of quadrilateral \(Q\)
  3. Find the exact probability that the smallest angle of \(Q\) is more than \(50 ^ { \circ }\)