Multi-part questions with division as one step

Questions where division of complex numbers is one part of a larger multi-part question that also involves other operations like addition, multiplication, powers, modulus, or argument.

27 questions · Moderate -0.2

Edexcel F1 2017 January Q5
Moderate -0.3
  1. The complex number \(z\) is given by
$$z = - 7 + 3 i$$ Find
  1. \(| z |\)
  2. \(\arg z\), giving your answer in radians to 2 decimal places. Given that \(\frac { z } { 1 + \mathrm { i } } + w = 3 - 6 \mathrm { i }\)
  3. find the complex number \(w\), giving your answer in the form \(a + b \mathrm { i }\), where \(a\) and \(b\) are real numbers. You must show all your working.
  4. Show the points representing \(z\) and \(w\) on a single Argand diagram.
Edexcel F1 2022 January Q2
Moderate -0.8
2. The complex numbers \(z _ { 1 }\) and \(z _ { 2 }\) are given by $$z _ { 1 } = 3 + 5 i \text { and } z _ { 2 } = - 2 + 6 i$$
  1. Show \(z _ { 1 }\) and \(z _ { 2 }\) on a single Argand diagram.
  2. Without using your calculator and showing all stages of your working,
    1. determine the value of \(\left| z _ { 1 } \right|\)
    2. express \(\frac { z _ { 1 } } { z _ { 2 } }\) in the form \(a + b \mathrm { i }\), where \(a\) and \(b\) are fully simplified fractions.
  3. Hence determine the value of \(\arg \frac { Z _ { 1 } } { Z _ { 2 } }\) Give your answer in radians to 2 decimal places.
Edexcel F1 2024 June Q4
Standard +0.3
  1. In this question you must show all stages of your working.
\section*{Solutions relying entirely on calculator technology are not acceptable.} The complex number \(z\) is defined by $$2 = - 3 + 4 i$$
  1. Determine \(\left| z ^ { 2 } - 3 \right|\)
  2. Express \(\frac { 50 } { z ^ { * } }\) in the form \(k z\), where \(k\) is a positive integer.
  3. Hence find the value of \(\arg \left( \frac { 50 } { z ^ { * } } \right)\) Give your answer in radians to 3 significant figures.
Edexcel FP1 2012 January Q1
Moderate -0.5
  1. Given that \(z _ { 1 } = 1 - \mathrm { i }\),
    1. find \(\arg \left( z _ { 1 } \right)\).
    Given also that \(z _ { 2 } = 3 + 4 \mathrm { i }\), find, in the form \(a + \mathrm { i } b , a , b \in \mathbb { R }\),
  2. \(z _ { 1 } z _ { 2 }\),
  3. \(\frac { z _ { 2 } } { z _ { 1 } }\). In part (b) and part (c) you must show all your working clearly.
Edexcel FP1 2013 January Q2
Moderate -0.3
2. $$z = \frac { 50 } { 3 + 4 \mathrm { i } }$$ Find, in the form \(a + \mathrm { i } b\) where \(a , b \in \mathbb { R }\),
  1. \(z\),
  2. \(z ^ { 2 }\). Find
  3. \(| z |\),
  4. \(\arg z ^ { 2 }\), giving your answer in degrees to 1 decimal place.
Edexcel FP1 Q3
Moderate -0.3
3. \(z = 1 + \mathrm { i } \sqrt { 3 }\) Express in the form \(a + \mathrm { i } b\), where \(a\) and \(b\) are real.
  1. \(z ^ { 2 } + z\),
  2. \(\frac { z } { 3 - z }\),
    giving the exact values of \(a\) and \(b\) in each part.
OCR FP1 2006 January Q1
Moderate -0.8
1
  1. Express \(( 1 + 8 i ) ( 2 - i )\) in the form \(x + i y\), showing clearly how you obtain your answer.
  2. Hence express \(\frac { 1 + 8 i } { 2 + i }\) in the form \(x + i y\).
OCR MEI FP1 2005 January Q8
Standard +0.3
8 Two complex numbers are given by \(\alpha = 2 - \mathrm { j }\) and \(\beta = - 1 + 2 \mathrm { j }\).
  1. Find \(\alpha + \beta , \alpha \beta\) and \(\frac { \alpha } { \beta }\) in the form \(a + b \mathrm { j }\), showing your working.
  2. Find the modulus of \(\alpha\), leaving your answer in surd form. Find also the argument of \(\alpha\).
  3. Sketch the locus \(| z - \alpha | = 2\) on an Argand diagram.
  4. On a separate Argand diagram, sketch the locus \(\arg ( z - \beta ) = \frac { 1 } { 4 } \pi\).
CAIE P3 2020 Specimen Q6
Moderate -0.5
6 Th cm plexm b rs \(1 + B\) ad \(4 + \quad 2\) are \(d \mathbf { b }\) ed \(\forall u\) ad \(v\) resp ctie ly.
  1. Fid \(\frac { \mathrm { u } } { \mathrm { V } }\) irt b fo \(\mathrm { m } x + \mathrm { i } y , \mathrm { w } \mathbf { b }\) re \(x\) ad \(y\) are real.
  2. State th argn en \(6 \frac { u } { v }\). In an Arg nd id ag am, with o ign \(O\), th \(\dot { \mathrm { p } } \mathrm { ns } A , B\) ad \(C\) represen th cm p ex m b rs \(u , v\) ad \(u - v\) resp ctie ly.
  3. State fullyt bg m etrical relatio h申 tween \(O C\) ad \(B A\).
  4. Sth the tag e \(A O B = \frac { 1 } { 4 } \pi\) rad as.
OCR FP1 2011 January Q2
Moderate -0.8
2 The complex numbers \(z\) and \(w\) are given by \(z = 4 + 3 \mathrm { i }\) and \(w = 6 - \mathrm { i }\). Giving your answers in the form \(x + \mathrm { i } y\) and showing clearly how you obtain them, find
  1. \(3 z - 4 w\),
  2. \(\frac { z ^ { * } } { w }\).
OCR FP1 2010 June Q4
Moderate -0.3
4 The complex numbers \(a\) and \(b\) are given by \(a = 7 + 6 \mathrm { i }\) and \(b = 1 - 3 \mathrm { i }\). Showing clearly how you obtain your answers, find
  1. \(| a - 2 b |\) and \(\arg ( a - 2 b )\),
  2. \(\frac { b } { a }\), giving your answer in the form \(x + \mathrm { i } y\).
OCR FP1 2012 June Q1
Moderate -0.8
1 The complex numbers \(z\) and \(w\) are given by \(z = 6 - \mathrm { i }\) and \(w = 5 + 4 \mathrm { i }\). Giving your answers in the form \(x + \mathrm { i } y\) and showing clearly how you obtain them, find
  1. \(z + 3 w\),
  2. \(\frac { Z } { W }\).
OCR FP1 2014 June Q2
Moderate -0.8
2 The complex number \(7 + 3 \mathrm { i }\) is denoted by \(z\). Find
  1. \(| z |\) and \(\arg z\),
  2. \(\frac { z } { 4 - \mathrm { i } }\), showing clearly how you obtain your answer.
OCR MEI FP1 2009 January Q9
Standard +0.3
9 Two complex numbers, \(\alpha\) and \(\beta\), are given by \(\alpha = 1 + \mathrm { j }\) and \(\beta = 2 - \mathrm { j }\).
  1. Express \(\alpha + \beta , \alpha \alpha ^ { * }\) and \(\frac { \alpha + \beta } { \alpha }\) in the form \(a + b \mathrm { j }\).
  2. Find a quadratic equation with roots \(\alpha\) and \(\alpha ^ { * }\).
  3. \(\alpha\) and \(\beta\) are roots of a quartic equation with real coefficients. Write down the two other roots and find this quartic equation in the form \(z ^ { 4 } + A z ^ { 3 } + B z ^ { 2 } + C z + D = 0\).
OCR MEI FP1 2010 June Q8
Moderate -0.3
8 Two complex numbers, \(\alpha\) and \(\beta\), are given by \(\alpha = \sqrt { 3 } + \mathrm { j }\) and \(\beta = 3 \mathrm { j }\).
  1. Find the modulus and argument of \(\alpha\) and \(\beta\).
  2. Find \(\alpha \beta\) and \(\frac { \beta } { \alpha }\), giving your answers in the form \(a + b \mathrm { j }\), showing your working.
  3. Plot \(\alpha , \beta , \alpha \beta\) and \(\frac { \beta } { \alpha }\) on a single Argand diagram.
OCR MEI FP1 2016 June Q2
Standard +0.3
2 The complex number \(z _ { 1 }\) is \(2 - 5 \mathrm { j }\) and the complex number \(z _ { 2 }\) is \(( a - 1 ) + ( 2 - b ) \mathrm { j }\), where \(a\) and \(b\) are real.
  1. Express \(\frac { z _ { 1 } { } ^ { * } } { z _ { 1 } }\) in the form \(x + y \mathrm { j }\), giving \(x\) and \(y\) in exact form. You must show clearly how you obtain your
    answer.
  2. Given that \(\frac { z _ { 1 } { } ^ { * } } { z _ { 1 } } = z _ { 2 }\), find the exact values of \(a\) and \(b\).
OCR Further Pure Core AS 2024 June Q2
Moderate -0.3
2 In this question you must show detailed reasoning.
  1. Express \(\frac { 8 + \mathrm { i } } { 2 - \mathrm { i } }\) in the form \(\mathrm { a } + \mathrm { bi }\) where \(a\) and \(b\) are real.
  2. Solve the equation \(4 x ^ { 2 } - 8 x + 5 = 0\). Give your answer(s) in the form \(\mathrm { c } + \mathrm { di }\) where \(c\) and \(d\) are real.
AQA FP1 2013 January Q2
Moderate -0.3
2
  1. Solve the equation \(w ^ { 2 } + 6 w + 34 = 0\), giving your answers in the form \(p + q \mathrm { i }\), where \(p\) and \(q\) are integers.
  2. It is given that \(z = \mathrm { i } ( 1 + \mathrm { i } ) ( 2 + \mathrm { i } )\).
    1. Express \(z\) in the form \(a + b \mathrm { i }\), where \(a\) and \(b\) are integers.
    2. Find integers \(m\) and \(n\) such that \(z + m z ^ { * } = n \mathrm { i }\).
OCR MEI Further Pure Core 2024 June Q2
Moderate -0.8
2 Two complex numbers are given by \(u = - 1 + \mathrm { i }\) and \(v = - 2 - \mathrm { i }\).
    1. Find \(\mathrm { u } - \mathrm { v }\) in the form \(\mathrm { a } + \mathrm { bi }\), where \(a\) and \(b\) are real.
    2. In this question you must show detailed reasoning. Find \(\frac { \mathrm { u } } { \mathrm { v } }\) in the form \(\mathrm { a } + \mathrm { bi }\), where \(a\) and \(b\) are real.
  1. Express \(u\) in exact modulus-argument form.
WJEC Further Unit 1 2022 June Q1
Standard +0.3
  1. The complex numbers \(z , w\) are given by \(z = 3 - 4 \mathrm { i } , w = 2 - \mathrm { i }\).
    1. (i) Find the modulus and argument of \(z w\).
      (ii) Express \(z w\) in the form \(r ( \cos \theta + \mathrm { i } \sin \theta )\).
    2. The complex numbers \(v , w , z\) satisfy the equation \(\frac { 1 } { v } = \frac { 1 } { w } - \frac { 1 } { z }\). Find \(v\) in the form \(a + \mathrm { i } b\), where \(a , b\) are real.
    3. The complex conjugate of \(v\) is denoted by \(\bar { v }\).
    Show that \(v \bar { v } = k\), where \(k\) is a real number whose value is to be determined.
CAIE P3 2016 November Q7
Standard +0.3
  1. Find the modulus and argument of \(z\).
  2. Express each of the following in the form \(x + \mathrm { i } y\), where \(x\) and \(y\) are real and exact:
    (a) \(z + 2 z ^ { * }\);
    (b) \(\frac { z ^ { * } } { \mathrm { i } z }\).
  3. On a sketch of an Argand diagram with origin \(O\), show the points \(A\) and \(B\) representing the complex numbers \(z ^ { * }\) and \(\mathrm { i } z\) respectively. Prove that angle \(A O B\) is equal to \(\frac { 1 } { 6 } \pi\).
SPS SPS FM Pure 2022 June Q6
Standard +0.3
6. The complex number \(w\) is given by $$w = 10 - 5 \mathrm { i }$$
  1. Find \(| w |\).
  2. Find arg \(w\), giving your answer in radians to 2 decimal places. The complex numbers \(z\) and \(w\) satisfy the equation $$( 2 + \mathrm { i } ) ( z + 3 \mathrm { i } ) = w$$
  3. Use algebra to find \(z\), giving your answer in the form \(a + b \mathrm { i }\), where \(a\) and \(b\) are real numbers. Given that $$\arg ( \lambda + 9 i + w ) = \frac { \pi } { 4 }$$ where \(\lambda\) is a real constant,
  4. find the value of \(\lambda\).
    [0pt] [BLANK PAGE]
SPS SPS FM Pure 2023 September Q7
Moderate -0.3
7. The complex number \(2 - \mathrm { i }\) is denoted by \(z\).
  1. Find \(| z |\) and arg \(z\).
  2. Given that \(a z + b z ^ { * } = 4 - 8 \mathrm { i }\), find the values of the real constants \(a\) and \(b\).
    [0pt] [BLANK PAGE]
Edexcel FP1 Q1
Standard +0.3
  1. Given that \(z = 22 + 4 \mathrm { i }\) and \(\frac { z } { w } = 6 - 8 \mathrm { i }\), find
    1. \(w\) in the form \(a + b \mathrm { i }\), where \(a\) and \(b\) are real,
    2. the argument of \(z\), in radians to 2 decimal places.
    3. (a) Prove that \(\sum _ { r = 1 } ^ { n } ( r + 1 ) ( r - 1 ) = \frac { 1 } { 6 } n ( n - 1 ) ( 2 n + 5 )\).
    4. Deduce that \(n ( n - 1 ) ( 2 n + 5 )\) is divisible by 6 for all \(n > 1\).
      [0pt] [P4 January 2002 Qn 3]
    $$\mathrm { f } ( x ) = x ^ { 3 } + x - 3$$ The equation \(\mathrm { f } ( x ) = 0\) has a root, \(\alpha\), between 1 and 2 .
  2. By considering \(\mathrm { f } ^ { \prime } ( x )\), show that \(\alpha\) is the only real root of the equation \(\mathrm { f } ( x ) = 0\).
  3. Taking 1.2 as your first approximation to \(\alpha\), apply the Newton-Raphson procedure once to \(\mathrm { f } ( x )\) to obtain a second approximation to \(\alpha\). Give your answer to 3 significant figures.
  4. Prove that your answer to part (b) gives the value of \(\alpha\) correct to 3 significant figures.
Edexcel FP1 Q19
Standard +0.3
  1. Given that \(z = 1 + \sqrt { } 3 \mathrm { i }\) and that \(\frac { w } { z } = 2 + 2 \mathrm { i }\), find
    1. \(w\) in the form \(a + \mathrm { i } b\), where \(a , b \in \mathbb { R }\),
    2. the argument of \(w\),
    3. the exact value for the modulus of \(w\).
    On an Argand diagram, the point \(A\) represents \(z\) and the point \(B\) represents \(w\).
  2. Draw the Argand diagram, showing the points \(A\) and \(B\).
  3. Find the distance \(A B\), giving your answer as a simplified surd.