Variable density MI integration

A question is this type if and only if it requires finding the moment of inertia of a body whose density varies continuously with position (e.g. ρ = f(r) or ρ = f(x)), necessitating integration with a non-uniform mass distribution.

4 questions · Challenging +1.6

Sort by: Default | Easiest first | Hardest first
OCR MEI M4 2006 June Q4
24 marks Challenging +1.8
4 A flagpole AB of length \(2 a\) is modelled as a thin rigid rod of variable mass per unit length given by $$\rho = \frac { M } { 8 a ^ { 2 } } ( 5 a - x ) ,$$ where \(x\) is the distance from A and \(M\) is the mass of the flagpole.
  1. Show that the moment of inertia of the flagpole about an axis through A and perpendicular to the flagpole is \(\frac { 7 } { 6 } M a ^ { 2 }\). Show also that the centre of mass of the flagpole is at a distance \(\frac { 11 } { 12 } a\) from A . The flagpole is hinged to a wall at A and can rotate freely in a vertical plane. A light inextensible rope of length \(2 \sqrt { 2 } a\) is attached to the end B and the other end is attached to a point on the wall a distance \(2 a\) vertically above A, as shown in Fig. 4. The flagpole is initially at rest when lying vertically against the wall, and then is displaced slightly so that it falls to a horizontal position, at which point the rope becomes taut and the flagpole comes to rest. \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{c97056a9-4156-4ecd-a80e-1a82c81ab824-4_403_365_1174_849} \captionsetup{labelformat=empty} \caption{Fig. 4}
    \end{figure}
  2. Find an expression for the angular velocity of the flagpole when it has turned through an angle \(\theta\).
  3. Show that the vertical component of the impulse in the rope when it becomes taut is \(\frac { 1 } { 12 } M \sqrt { 77 a g }\). Hence write down the horizontal component.
  4. Find the horizontal and vertical components of the impulse that the hinge exerts on the flagpole when the rope becomes taut. Hence find the angle that this impulse makes with the horizontal.
OCR MEI M4 2008 June Q3
24 marks Challenging +1.2
3 A circular disc of radius \(a \mathrm {~m}\) has mass per unit area \(\rho \mathrm { kg } \mathrm { m } ^ { - 2 }\) given by \(\rho = k ( a + r )\), where \(r \mathrm {~m}\) is the distance from the centre and \(k\) is a positive constant. The disc can rotate freely about an axis perpendicular to it and through its centre.
  1. Show that the mass, \(M \mathrm {~kg}\), of the disc is given by \(M = \frac { 5 } { 3 } k \pi a ^ { 3 }\), and show that the moment of inertia, \(I \mathrm {~kg} \mathrm {~m} ^ { 2 }\), about this axis is given by \(I = \frac { 27 } { 50 } M a ^ { 2 }\). For the rest of this question, take \(M = 64\) and \(a = 0.625\).
    The disc is at rest when it is given a tangential impulsive blow of 50 N s at a point on its circumference.
  2. Find the angular speed of the disc. The disc is then accelerated by a constant couple reaching an angular speed of \(30 \mathrm { rad } \mathrm { s } ^ { - 1 }\) in 20 seconds.
  3. Calculate the magnitude of this couple. When the angular speed is \(30 \mathrm { rads } ^ { - 1 }\), the couple is removed and brakes are applied to bring the disc to rest. The effect of the brakes is modelled by a resistive couple of \(3 \dot { \theta } \mathrm { Nm }\), where \(\dot { \theta }\) is the angular speed of the disc in \(\mathrm { rad } \mathrm { s } ^ { - 1 }\).
  4. Formulate a differential equation for \(\dot { \theta }\) and hence find \(\dot { \theta }\) in terms of \(t\), the time in seconds from when the brakes are first applied.
  5. By reference to your expression for \(\dot { \theta }\), give a brief criticism of this model for the effect of the brakes.
OCR MEI M4 2015 June Q4
24 marks Challenging +1.8
4 A solid cylinder of radius \(a \mathrm {~m}\) and length \(3 a \mathrm {~m}\) has density \(\rho \mathrm { kg } \mathrm { m } ^ { - 3 }\) given by \(\rho = k \left( 2 + \frac { x } { a } \right)\) where \(x \mathrm {~m}\) is the distance from one end and \(k\) is a positive constant. The mass of the cylinder is \(M \mathrm {~kg}\) where \(M = \frac { 21 } { 2 } \pi a ^ { 3 } k\). Let A and B denote the circular faces of the cylinder where \(x = 0\) and \(x = 3 a\), respectively.
  1. Show by integration that the moment of inertia, \(I _ { \mathrm { A } } \mathrm { kg } \mathrm { m } ^ { 2 }\), of the cylinder about a diameter of the face A is given by \(I _ { \mathrm { A } } = \frac { 109 } { 28 } M a ^ { 2 }\).
  2. Show that the centre of mass of the cylinder is \(\frac { 12 } { 7 } a \mathrm {~m}\) from A .
  3. Using the parallel axes theorem, or otherwise, show that the moment of inertia, \(I _ { \mathrm { B } } \mathrm { kg } \mathrm { m } ^ { 2 }\), of the cylinder about a diameter of the face B is given by \(I _ { \mathrm { B } } = \frac { 73 } { 28 } M a ^ { 2 }\). You are now given that \(M = 4\) and \(a = 0.7\). The cylinder is at rest and can rotate freely about a horizontal axis which is a diameter of the face B as shown in Fig. 4. It is struck at the bottom of the curved surface by a small object of mass 0.2 kg which is travelling horizontally at speed \(20 \mathrm {~ms} ^ { - 1 }\) in the vertical plane which is both perpendicular to the axis of rotation and contains the axis of symmetry of the cylinder. The object sticks to the cylinder at the point of impact. \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{8ea28e6f-528c-4e3c-9562-6c964043747e-4_606_435_1087_817} \captionsetup{labelformat=empty} \caption{Fig. 4}
    \end{figure}
  4. Find the initial angular speed of the combined object after the collision. \section*{END OF QUESTION PAPER}
OCR MEI M4 2016 June Q2
12 marks Challenging +1.8
2 A thin rigid rod PQ has length \(2 a\). Its mass per unit length, \(\rho\), is given by \(\rho = k \left( 1 + \frac { x } { 2 a } \right)\) where \(x\) is the distance from P and \(k\) is a positive constant. The mass of the rod is \(M\) and the moment of inertia of the rod about an axis through P perpendicular to PQ is \(I\).
  1. Show that \(I = \frac { 14 } { 9 } M a ^ { 2 }\). The rod is initially at rest with Q vertically below P . It is free to rotate in a vertical plane about a smooth fixed horizontal axis passing through P . The rod is struck a horizontal blow perpendicular to the fixed axis at the point where \(x = \frac { 3 } { 2 } a\). The magnitude of the impulse of this blow is \(J\).
  2. Find, in terms of \(a , J\) and \(M\), the initial angular speed of the rod.
  3. Find, in terms of \(a , g\) and \(M\), the set of values of \(J\) for which the rod makes complete revolutions.