OCR MEI M4 2006 June — Question 4

Exam BoardOCR MEI
ModuleM4 (Mechanics 4)
Year2006
SessionJune
TopicMoments of inertia

4 A flagpole AB of length \(2 a\) is modelled as a thin rigid rod of variable mass per unit length given by $$\rho = \frac { M } { 8 a ^ { 2 } } ( 5 a - x ) ,$$ where \(x\) is the distance from A and \(M\) is the mass of the flagpole.
  1. Show that the moment of inertia of the flagpole about an axis through A and perpendicular to the flagpole is \(\frac { 7 } { 6 } M a ^ { 2 }\). Show also that the centre of mass of the flagpole is at a distance \(\frac { 11 } { 12 } a\) from A . The flagpole is hinged to a wall at A and can rotate freely in a vertical plane. A light inextensible rope of length \(2 \sqrt { 2 } a\) is attached to the end B and the other end is attached to a point on the wall a distance \(2 a\) vertically above A, as shown in Fig. 4. The flagpole is initially at rest when lying vertically against the wall, and then is displaced slightly so that it falls to a horizontal position, at which point the rope becomes taut and the flagpole comes to rest. \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{c97056a9-4156-4ecd-a80e-1a82c81ab824-4_403_365_1174_849} \captionsetup{labelformat=empty} \caption{Fig. 4}
    \end{figure}
  2. Find an expression for the angular velocity of the flagpole when it has turned through an angle \(\theta\).
  3. Show that the vertical component of the impulse in the rope when it becomes taut is \(\frac { 1 } { 12 } M \sqrt { 77 a g }\). Hence write down the horizontal component.
  4. Find the horizontal and vertical components of the impulse that the hinge exerts on the flagpole when the rope becomes taut. Hence find the angle that this impulse makes with the horizontal.