Derive equation from integral condition

A question is this type if and only if it asks to show that a constant satisfies an equation derived from evaluating a definite integral equal to a given value.

22 questions · Standard +0.6

Sort by: Default | Easiest first | Hardest first
CAIE P2 2022 June Q6
8 marks Standard +0.8
6 \includegraphics[max width=\textwidth, alt={}, center]{1b9c6b41-69dd-4132-92c7-9507cbd741dd-08_542_661_269_731} The diagram shows the curve \(y = 3 \mathrm { e } ^ { 2 x - 1 }\). The shaded region is bounded by the curve and the lines \(x = a , x = a + 1\) and \(y = 0\), where \(a\) is a constant. It is given that the area of the shaded region is 120 square units.
  1. Show that \(a = \frac { 1 } { 2 } \ln \left( 80 + \mathrm { e } ^ { 2 a - 1 } \right) - \frac { 1 } { 2 }\).
  2. Use an iterative formula, based on the equation in part (a), to find the value of \(a\) correct to 3 significant figures. Give the result of each iteration to 5 significant figures.
CAIE P2 2022 June Q6
8 marks Standard +0.8
6 \includegraphics[max width=\textwidth, alt={}, center]{712be8e6-e1e9-4662-b1f1-51c39c2c9df1-08_542_661_269_731} The diagram shows the curve \(y = 3 \mathrm { e } ^ { 2 x - 1 }\). The shaded region is bounded by the curve and the lines \(x = a , x = a + 1\) and \(y = 0\), where \(a\) is a constant. It is given that the area of the shaded region is 120 square units.
  1. Show that \(a = \frac { 1 } { 2 } \ln \left( 80 + \mathrm { e } ^ { 2 a - 1 } \right) - \frac { 1 } { 2 }\).
  2. Use an iterative formula, based on the equation in part (a), to find the value of \(a\) correct to 3 significant figures. Give the result of each iteration to 5 significant figures.
CAIE P2 2023 June Q3
7 marks Standard +0.3
3 It is given that \(\int _ { 0 } ^ { a } \left( 3 \mathrm { e } ^ { 2 x } - 1 \right) \mathrm { d } x = 12\), where \(a\) is a positive constant.
  1. Show that \(a = \frac { 1 } { 2 } \ln \left( 9 + \frac { 2 } { 3 } a \right)\).
  2. Use an iterative formula, based on the equation in (a), to find the value of \(a\) correct to 4 significant figures. Use an initial value of 1 and give the result of each iteration to 6 significant figures. [3]
CAIE P2 2023 March Q5
8 marks Standard +0.3
5 It is given that \(\int _ { 1 } ^ { a } \left( \frac { 4 } { 1 + 2 x } + \frac { 3 } { x } \right) \mathrm { d } x = \ln 10\), where \(a\) is a constant greater than 1 .
  1. Show that \(a = \sqrt [ 3 ] { 90 ( 1 + 2 a ) ^ { - 2 } }\).
  2. Use an iterative formula, based on the equation in (a), to find the value of \(a\) correct to 3 significant figures. Use an initial value of 1.7 and give the result of each iteration to 5 significant figures. \includegraphics[max width=\textwidth, alt={}, center]{ce0d5faa-9428-4afd-829d-7634c5bd150d-10_798_495_269_810} The diagram shows the curve with equation \(y = \frac { 4 \mathrm { e } ^ { 2 x } + 9 } { \mathrm { e } ^ { x } + 2 }\). The curve has a minimum point \(M\) and crosses the \(y\)-axis at the point \(P\).
  3. Find the exact value of the gradient of the curve at \(P\).
  4. Find the exact coordinates of \(M\).
CAIE P2 2024 November Q5
8 marks Standard +0.3
5 It is given that \(\int _ { a } ^ { a ^ { 3 } } \frac { 10 } { 2 x + 1 } \mathrm {~d} x = 7\), where \(a\) is a constant greater than 1 .
  1. Show that \(a = \sqrt [ 3 ] { 0.5 \mathrm { e } ^ { 1.4 } ( 2 a + 1 ) - 0.5 }\). \includegraphics[max width=\textwidth, alt={}, center]{468efb3f-be7b-4f9e-b8c3-c6fd40d7714a-09_2725_35_99_20}
  2. Use an iterative formula, based on the equation in part (a), to find the value of \(a\) correct to 3 significant figures. Use an initial value of 2 and give the result of each iteration to 5 significant figures.
CAIE P2 2008 June Q8
10 marks Standard +0.3
8 The constant \(a\), where \(a > 1\), is such that \(\int _ { 1 } ^ { a } \left( x + \frac { 1 } { x } \right) \mathrm { d } x = 6\).
  1. Find an equation satisfied by \(a\), and show that it can be written in the form $$a = \sqrt { } ( 13 - 2 \ln a )$$
  2. Verify, by calculation, that the equation \(a = \sqrt { } ( 13 - 2 \ln a )\) has a root between 3 and 3.5.
  3. Use the iterative formula $$a _ { n + 1 } = \sqrt { } \left( 13 - 2 \ln a _ { n } \right)$$ with \(a _ { 1 } = 3.2\), to calculate the value of \(a\) correct to 2 decimal places. Give the result of each iteration to 4 decimal places.
CAIE P2 2014 June Q7
9 marks Standard +0.3
7 It is given that \(\int _ { 0 } ^ { a } \left( \frac { 1 } { 2 } \mathrm { e } ^ { 3 x } + x ^ { 2 } \right) \mathrm { d } x = 10\), where \(a\) is a positive constant.
  1. Show that \(a = \frac { 1 } { 3 } \ln \left( 61 - 2 a ^ { 3 } \right)\).
  2. Show by calculation that the value of \(a\) lies between 1.0 and 1.5.
  3. Use an iterative formula, based on the equation in part (i), to find the value of \(a\) correct to 3 decimal places. Give the result of each iteration to 5 decimal places.
CAIE P2 2015 June Q5
8 marks Standard +0.3
5
  1. Given that \(\int _ { 0 } ^ { a } \left( 3 \mathrm { e } ^ { \frac { 1 } { 2 } x } + 1 \right) \mathrm { d } x = 10\), show that the positive constant \(a\) satisfies the equation $$a = 2 \ln \left( \frac { 16 - a } { 6 } \right)$$
  2. Use the iterative formula \(a _ { n + 1 } = 2 \ln \left( \frac { 16 - a _ { n } } { 6 } \right)\) with \(a _ { 1 } = 2\) to find the value of \(a\) correct to 3 decimal places. Give the result of each iteration to 5 decimal places.
CAIE P2 2018 June Q6
11 marks Challenging +1.2
6 It is given that \(\int _ { 0 } ^ { a } \left( 1 + \mathrm { e } ^ { \frac { 1 } { 2 } x } \right) ^ { 2 } \mathrm {~d} x = 10\), where \(a\) is a positive constant.
  1. Show that \(a = 2 \ln \left( \frac { 15 - a } { 4 + \mathrm { e } ^ { \frac { 1 } { 2 } a } } \right)\).
  2. Use the equation in part (i) to show by calculation that \(1.5 < a < 1.6\).
  3. Use an iterative formula based on the equation in part (i) to find the value of \(a\) correct to 3 significant figures. Give the result of each iteration to 5 significant figures.
CAIE P3 2015 June Q6
9 marks Standard +0.3
6 It is given that \(\int _ { 0 } ^ { a } x \cos x \mathrm {~d} x = 0.5\), where \(0 < a < \frac { 1 } { 2 } \pi\).
  1. Show that \(a\) satisfies the equation \(\sin a = \frac { 1.5 - \cos a } { a }\).
  2. Verify by calculation that \(a\) is greater than 1 .
  3. Use the iterative formula $$a _ { n + 1 } = \sin ^ { - 1 } \left( \frac { 1.5 - \cos a _ { n } } { a _ { n } } \right)$$ to determine the value of \(a\) correct to 4 decimal places, giving the result of each iteration to 6 decimal places.
CAIE P3 2008 November Q9
12 marks Challenging +1.2
9 The constant \(a\) is such that \(\int _ { 0 } ^ { a } x \mathrm { e } ^ { \frac { 1 } { 2 } x } \mathrm {~d} x = 6\).
  1. Show that \(a\) satisfies the equation $$x = 2 + \mathrm { e } ^ { - \frac { 1 } { 2 } x } .$$
  2. By sketching a suitable pair of graphs, show that this equation has only one root.
  3. Verify by calculation that this root lies between 2 and 2.5.
  4. Use an iterative formula based on the equation in part (i) to calculate the value of \(a\) correct to 2 decimal places. Give the result of each iteration to 4 decimal places.
CAIE P3 2010 November Q7
8 marks Standard +0.3
7
  1. Given that \(\int _ { 1 } ^ { a } \frac { \ln x } { x ^ { 2 } } \mathrm {~d} x = \frac { 2 } { 5 }\), show that \(a = \frac { 5 } { 3 } ( 1 + \ln a )\).
  2. Use an iteration formula based on the equation \(a = \frac { 5 } { 3 } ( 1 + \ln a )\) to find the value of \(a\) correct to 2 decimal places. Use an initial value of 4 and give the result of each iteration to 4 decimal places.
CAIE P3 2013 November Q5
8 marks Challenging +1.2
5 It is given that \(\int _ { 0 } ^ { p } 4 x \mathrm { e } ^ { - \frac { 1 } { 2 } x } \mathrm {~d} x = 9\), where \(p\) is a positive constant.
  1. Show that \(p = 2 \ln \left( \frac { 8 p + 16 } { 7 } \right)\).
  2. Use an iterative process based on the equation in part (i) to find the value of \(p\) correct to 3 significant figures. Use a starting value of 3.5 and give the result of each iteration to 5 significant figures.
CAIE P3 2019 November Q9
10 marks Challenging +1.2
9 It is given that \(\int _ { 0 } ^ { a } x \cos \frac { 1 } { 3 } x \mathrm {~d} x = 3\), where the constant \(a\) is such that \(0 < a < \frac { 3 } { 2 } \pi\).
  1. Show that \(a\) satisfies the equation $$a = \frac { 4 - 3 \cos \frac { 1 } { 3 } a } { \sin \frac { 1 } { 3 } a }$$
  2. Verify by calculation that \(a\) lies between 2.5 and 3 .
  3. Use an iterative formula based on the equation in part (i) to calculate \(a\) correct to 3 decimal places. Give the result of each iteration to 5 decimal places.
CAIE P2 2017 March Q5
8 marks Standard +0.3
5 It is given that \(a\) is a positive constant such that $$\int _ { 0 } ^ { a } \left( 1 + 2 x + 3 \mathrm { e } ^ { 3 x } \right) \mathrm { d } x = 250$$
  1. Show that \(a = \frac { 1 } { 3 } \ln \left( 251 - a - a ^ { 2 } \right)\).
  2. Use an iterative formula based on the equation in part (i) to find the value of \(a\) correct to 4 significant figures. Give the result of each iteration to 6 significant figures.
CAIE P2 2009 November Q7
8 marks Standard +0.3
7 \includegraphics[max width=\textwidth, alt={}, center]{67a12825-d7ce-4853-ada4-b8d3009331b5-3_531_759_262_694} The diagram shows the curve \(y = \mathrm { e } ^ { - x }\). The shaded region \(R\) is bounded by the curve and the lines \(y = 1\) and \(x = p\), where \(p\) is a constant.
  1. Find the area of \(R\) in terms of \(p\).
  2. Show that if the area of \(R\) is equal to 1 then $$p = 2 - \mathrm { e } ^ { - p }$$
  3. Use the iterative formula $$p _ { n + 1 } = 2 - \mathrm { e } ^ { - p _ { n } }$$ with initial value \(p _ { 1 } = 2\), to calculate the value of \(p\) correct to 2 decimal places. Give the result of each iteration to 4 decimal places.
CAIE P2 2013 November Q7
10 marks Standard +0.3
7 \includegraphics[max width=\textwidth, alt={}, center]{0900b607-6136-4bf7-a42e-6824d1a21e43-3_451_451_255_845} The diagram shows part of the curve \(y = 8 x + \frac { 1 } { 2 } \mathrm { e } ^ { x }\). The shaded region \(R\) is bounded by the curve and by the lines \(x = 0 , y = 0\) and \(x = a\), where \(a\) is positive. The area of \(R\) is equal to \(\frac { 1 } { 2 }\).
  1. Find an equation satisfied by \(a\), and show that the equation can be written in the form $$a = \sqrt { } \left( \frac { 2 - \mathrm { e } ^ { a } } { 8 } \right)$$
  2. Verify by calculation that the equation \(a = \sqrt { } \left( \frac { 2 - \mathrm { e } ^ { a } } { 8 } \right)\) has a root between 0.2 and 0.3.
  3. Use the iterative formula \(a _ { n + 1 } = \sqrt { } \left( \frac { 2 - \mathrm { e } ^ { a _ { n } } } { 8 } \right)\) to determine this root correct to 2 decimal places. Give the result of each iteration to 4 decimal places.
CAIE P2 2015 November Q5
8 marks Standard +0.3
5 It is given that \(\int _ { 0 } ^ { a } \left( 3 \mathrm { e } ^ { 3 x } + 5 \mathrm { e } ^ { x } \right) \mathrm { d } x = 100\), where \(a\) is a positive constant.
  1. Show that \(a = \frac { 1 } { 3 } \ln \left( 106 - 5 \mathrm { e } ^ { a } \right)\).
  2. Use an iterative formula based on the equation in part (i) to find the value of \(a\) correct to 3 decimal places. Give the result of each iteration to 5 decimal places.
CAIE P2 2016 November Q4
7 marks Standard +0.3
4 It is given that the positive constant \(a\) is such that $$\int _ { - a } ^ { a } \left( 4 \mathrm { e } ^ { 2 x } + 5 \right) \mathrm { d } x = 100$$
  1. Show that \(a = \frac { 1 } { 2 } \ln \left( 50 + \mathrm { e } ^ { - 2 a } - 5 a \right)\).
  2. Use the iterative formula \(a _ { n + 1 } = \frac { 1 } { 2 } \ln \left( 50 + \mathrm { e } ^ { - 2 a _ { n } } - 5 a _ { n } \right)\) to find \(a\) correct to 3 decimal places. Give the result of each iteration to 5 decimal places.
  3. Show that \(\frac { \cos 2 x + 9 \cos x + 5 } { \cos x + 4 } \equiv 2 \cos x + 1\).
  4. Hence find the exact value of \(\int _ { - \pi } ^ { \pi } \frac { \cos 4 x + 9 \cos 2 x + 5 } { \cos 2 x + 4 } \mathrm {~d} x\).
CAIE P3 2023 June Q9
10 marks Standard +0.8
9 The constant \(a\) is such that \(\int _ { 0 } ^ { a } x \mathrm { e } ^ { - 2 x } \mathrm {~d} x = \frac { 1 } { 8 }\).
  1. Show that \(a = \frac { 1 } { 2 } \ln ( 4 a + 2 )\).
  2. Verify by calculation that \(a\) lies between 0.5 and 1 .
  3. Use an iterative formula based on the equation in (a) to determine \(a\) correct to 2 decimal places. Give the result of each iteration to 4 decimal places.
OCR C3 2007 June Q6
9 marks Standard +0.3
6
  1. Given that \(\int _ { 0 } ^ { \mathrm { a } } \left( 6 \mathrm { e } ^ { 2 \mathrm { x } } + \mathrm { x } \right) \mathrm { dx } = 42\), show that \(\mathrm { a } = \frac { 1 } { 2 } \ln \left( 15 - \frac { 1 } { 6 } \mathrm { a } ^ { 2 } \right)\).
  2. Use an iterative formula, based on the equation in part (i), to find the value of a correct to 3 decimal places. Use a starting value of 1 and show the result of each iteration.
Edexcel AEA 2004 June Q6
17 marks Challenging +1.8
6. $$\mathrm { f } ( x ) = x - [ x ] , \quad x \geq 0$$ where \([ x ]\) is the largest integer \(\leq x\). For example, \(f ( 3.7 ) = 3.7 - 3 = 0.7 ; f ( 3 ) = 3 - 3 = 0\).
  1. Sketch the graph of \(y = \mathrm { f } ( x )\) for \(0 \leq x < 4\).
  2. Find the value of \(p\) for which \(\int _ { 2 } ^ { p } \mathrm { f } ( x ) \mathrm { d } x = 0.18\). Given that $$\mathrm { g } ( x ) = \frac { 1 } { 1 + k x } , \quad x \geq 0 , \quad k > 0$$ and that \(x _ { 0 } = \frac { 1 } { 2 }\) is a root of the equation \(\mathrm { f } ( x ) = \mathrm { g } ( x )\),
  3. find the value of \(k\).
  4. Add a sketch of the graph of \(y = \mathrm { g } ( x )\) to your answer to part (a). The root of \(\mathrm { f } ( x ) = \mathrm { g } ( x )\) in the interval \(n < x < n + 1\) is \(x _ { n }\), where \(n\) is an integer.
  5. Prove that $$2 x _ { n } ^ { 2 } - ( 2 n - 1 ) x _ { n } - ( n + 1 ) = 0$$
  6. Find the smallest value of \(n\) for which \(x _ { n } - n < 0.05\).