6. With respect to a fixed origin \(O\), the lines \(l _ { 1 }\) and \(l _ { 2 }\) are given by the equations
$$\begin{array} { l l }
l _ { 1 } : & \mathbf { r } = ( - 9 \mathbf { i } + 10 \mathbf { k } ) + \lambda ( 2 \mathbf { i } + \mathbf { j } - \mathbf { k } )
l _ { 2 } : & \mathbf { r } = ( 3 \mathbf { i } + \mathbf { j } + 17 \mathbf { k } ) + \mu ( 3 \mathbf { i } - \mathbf { j } + 5 \mathbf { k } )
\end{array}$$
where \(\lambda\) and \(\mu\) are scalar parameters.
- Show that \(l _ { 1 }\) and \(l _ { 2 }\) meet and find the position vector of their point of intersection.
- Show that \(l _ { 1 }\) and \(l _ { 2 }\) are perpendicular to each other.
The point \(A\) has position vector \(5 \mathbf { i } + 7 \mathbf { j } + 3 \mathbf { k }\).
- Show that \(A\) lies on \(l _ { 1 }\).
The point \(B\) is the image of \(A\) after reflection in the line \(l _ { 2 }\).
- Find the position vector of \(B\).