Showing integral equals given value

A question is this type if and only if it asks to prove or show that a definite integral equals a specific value (often involving ln or exact forms) using substitution.

31 questions · Standard +0.4

Sort by: Default | Easiest first | Hardest first
CAIE P3 2007 June Q7
9 marks Standard +0.3
7 Let \(I = \int _ { 1 } ^ { 4 } \frac { 1 } { x ( 4 - \sqrt { } x ) } \mathrm { d } x\).
  1. Use the substitution \(u = \sqrt { } x\) to show that \(I = \int _ { 1 } ^ { 2 } \frac { 2 } { u ( 4 - u ) } \mathrm { d } u\).
  2. Hence show that \(I = \frac { 1 } { 2 } \ln 3\).
CAIE P3 2012 June Q8
10 marks Standard +0.8
8 Let \(I = \int _ { 2 } ^ { 5 } \frac { 5 } { x + \sqrt { } ( 6 - x ) } \mathrm { d } x\).
  1. Using the substitution \(u = \sqrt { } ( 6 - x )\), show that $$I = \int _ { 1 } ^ { 2 } \frac { 10 u } { ( 3 - u ) ( 2 + u ) } \mathrm { d } u$$
  2. Hence show that \(I = 2 \ln \left( \frac { 9 } { 2 } \right)\).
CAIE P3 2015 June Q6
8 marks Standard +0.3
6 Let \(I = \int _ { 0 } ^ { 1 } \frac { \sqrt { } x } { 2 - \sqrt { } x } \mathrm {~d} x\).
  1. Using the substitution \(u = 2 - \sqrt { } x\), show that \(I = \int _ { 1 } ^ { 2 } \frac { 2 ( 2 - u ) ^ { 2 } } { u } \mathrm {~d} u\).
  2. Hence show that \(I = 8 \ln 2 - 5\).
CAIE P3 2016 June Q7
8 marks Standard +0.3
7 Let \(I = \int _ { 0 } ^ { 1 } \frac { x ^ { 5 } } { \left( 1 + x ^ { 2 } \right) ^ { 3 } } \mathrm {~d} x\).
  1. Using the substitution \(u = 1 + x ^ { 2 }\), show that \(I = \int _ { 1 } ^ { 2 } \frac { ( u - 1 ) ^ { 2 } } { 2 u ^ { 3 } } \mathrm {~d} u\).
  2. Hence find the exact value of \(I\).
CAIE P3 2014 November Q10
10 marks Standard +0.3
10 By first using the substitution \(u = \mathrm { e } ^ { x }\), show that $$\int _ { 0 } ^ { \ln 4 } \frac { \mathrm { e } ^ { 2 x } } { \mathrm { e } ^ { 2 x } + 3 \mathrm { e } ^ { x } + 2 } \mathrm {~d} x = \ln \left( \frac { 8 } { 5 } \right)$$
CAIE P3 2016 November Q5
8 marks Standard +0.8
5
  1. Prove the identity \(\tan 2 \theta - \tan \theta \equiv \tan \theta \sec 2 \theta\).
  2. Hence show that \(\int _ { 0 } ^ { \frac { 1 } { 6 } \pi } \tan \theta \sec 2 \theta \mathrm {~d} \theta = \frac { 1 } { 2 } \ln \frac { 3 } { 2 }\).
CAIE P3 2016 November Q6
9 marks Standard +0.3
6 Let \(I = \int _ { 1 } ^ { 4 } \frac { ( \sqrt { } x ) - 1 } { 2 ( x + \sqrt { } x ) } \mathrm { d } x\).
  1. Using the substitution \(u = \sqrt { } x\), show that \(I = \int _ { 1 } ^ { 2 } \frac { u - 1 } { u + 1 } \mathrm {~d} u\).
  2. Hence show that \(I = 1 + \ln \frac { 4 } { 9 }\).
CAIE P3 2023 June Q7
8 marks Standard +0.3
7
  1. Use the substitution \(u = \cos x\) to show that $$\int _ { 0 } ^ { \pi } \sin 2 x \mathrm { e } ^ { 2 \cos x } \mathrm {~d} x = \int _ { - 1 } ^ { 1 } 2 u \mathrm { e } ^ { 2 u } \mathrm {~d} u$$
  2. Hence find the exact value of \(\int _ { 0 } ^ { \pi } \sin 2 x \mathrm { e } ^ { 2 \cos x } \mathrm {~d} x\).
Edexcel P3 2022 January Q3
6 marks Moderate -0.3
3. (i) Find, in simplest form, $$\int ( 2 x - 5 ) ^ { 7 } \mathrm {~d} x$$ (ii) Show, by algebraic integration, that $$\int _ { 0 } ^ { \frac { \pi } { 3 } } \frac { 4 \sin x } { 1 + 2 \cos x } \mathrm {~d} x = \ln a$$ where \(a\) is a rational constant to be found.
Edexcel C34 Specimen Q3
6 marks Standard +0.3
  1. Using the substitution \(u = \cos x + 1\), or otherwise, show that
$$\int _ { 0 } ^ { \frac { \pi } { 2 } } \mathrm { e } ^ { ( \cos x + 1 ) } \sin x \mathrm {~d} x = \mathrm { e } ( \mathrm { e } - 1 )$$
Edexcel P4 2021 January Q5
8 marks Standard +0.3
5. In this question you should show all stages of your working. Solutions relying on calculator technology are not acceptable.
Using the substitution \(u = 3 + \sqrt { 2 x - 1 }\) find the exact value of $$\int _ { 1 } ^ { 13 } \frac { 4 } { 3 + \sqrt { 2 x - 1 } } d x$$ giving your answer in the form \(p + q \ln 2\), where \(p\) and \(q\) are integers to be found.
VIIIV SIHI NI IIIIM ION OCVIIN SIHI NI III M M O N OOVIIV SIHI NI IIIYM ION OC
Edexcel C4 2010 June Q2
6 marks
2. Using the substitution \(u = \cos x + 1\), or otherwise, show that $$\int _ { 0 } ^ { \frac { \pi } { 2 } } \mathrm { e } ^ { \cos x + 1 } \sin x \mathrm {~d} x = \mathrm { e } ( \mathrm { e } - 1 )$$ (6)
Edexcel C4 2013 June Q3
8 marks Standard +0.8
3. Using the substitution \(u = 2 + \sqrt { } ( 2 x + 1 )\), or other suitable substitutions, find the exact value of $$\int _ { 0 } ^ { 4 } \frac { 1 } { 2 + \sqrt { } ( 2 x + 1 ) } d x$$ giving your answer in the form \(A + 2 \ln B\), where \(A\) is an integer and \(B\) is a positive constant.
OCR MEI C3 2005 June Q5
6 marks Standard +0.3
5 Using the substitution \(u = 2 x + 1\), show that \(\int _ { 0 } ^ { 1 } \frac { x } { 2 x + 1 } \mathrm {~d} x = \frac { 1 } { 4 } ( 2 - \ln 3 )\).
OCR MEI C3 2008 June Q4
4 marks
4 Show that \(\int _ { 1 } ^ { 4 } \frac { x } { x ^ { 2 } + 2 } \mathrm {~d} x = \frac { 1 } { 2 } \ln 6\).
OCR MEI C3 Q5
5 marks Standard +0.3
5 Using a suitable substitution or otherwise, show that \(\int _ { 0 } ^ { \frac { 1 } { 2 } \pi } \frac { \sin 2 x } { 3 + \cos 2 x } \mathrm {~d} x = \frac { 1 } { 2 } \ln 2\).
OCR MEI C3 Q1
5 marks Moderate -0.3
1 Show that \(\int _ { 1 } ^ { 2 } \frac { 1 } { \sqrt { 3 x - 2 } } \mathrm {~d} x = \frac { 2 } { 3 }\).
OCR MEI C3 Q5
4 marks Standard +0.3
5 Show that \(\int _ { 1 } ^ { 4 } \frac { x } { x ^ { 2 } + 2 } \mathrm {~d} x = \frac { 1 } { 2 } \ln 6\).
OCR C4 2007 January Q4
5 marks Moderate -0.3
4 Use the substitution \(u = 2 x - 5\) to show that \(\int _ { \frac { 5 } { 2 } } ^ { 3 } ( 4 x - 8 ) ( 2 x - 5 ) ^ { 7 } \mathrm {~d} x = \frac { 17 } { 72 }\).
OCR C4 Q3
8 marks Standard +0.3
3. Using the substitution \(u = \mathrm { e } ^ { x } - 1\), show that $$\int _ { \ln 2 } ^ { \ln 5 } \frac { \mathrm { e } ^ { 2 x } } { \sqrt { \mathrm { e } ^ { x } - 1 } } \mathrm {~d} x = \frac { 20 } { 3 }$$
OCR MEI C3 2013 June Q6
5 marks Standard +0.3
6 Using a suitable substitution or otherwise, show that \(\int _ { 0 } ^ { \frac { 1 } { 2 } \pi } \frac { \sin 2 x } { 3 + \cos 2 x } \mathrm {~d} x = \frac { 1 } { 2 } \ln 2\).
OCR C4 2012 June Q6
7 marks Standard +0.3
6 Use the substitution \(u = 1 + \sqrt { x }\) to show that $$\int _ { 4 } ^ { 9 } \frac { 1 } { 1 + \sqrt { x } } \mathrm {~d} x = 2 + 2 \ln \frac { 3 } { 4 }$$
OCR H240/01 2022 June Q9
7 marks Standard +0.8
9 Use the substitution \(x = 2 \sin \theta\) to show that \(\int _ { 1 } ^ { \sqrt { 3 } } \sqrt { 4 - x ^ { 2 } } \mathrm {~d} x = \frac { 1 } { 3 } \pi\).
OCR H240/03 2018 June Q5
13 marks Standard +0.3
5
  1. Use the trapezium rule, with two strips of equal width, to show that $$\int _ { 0 } ^ { 4 } \frac { 1 } { 2 + \sqrt { x } } \mathrm {~d} x \approx \frac { 11 } { 4 } - \sqrt { 2 }$$
  2. Use the substitution \(x = u ^ { 2 }\) to find the exact value of $$\int _ { 0 } ^ { 4 } \frac { 1 } { 2 + \sqrt { x } } \mathrm {~d} x$$
  3. Using your answers to parts (i) and (ii), show that $$\ln 2 \approx k + \frac { \sqrt { 2 } } { 4 }$$ where \(k\) is a rational number to be determined.
Edexcel Paper 1 2018 June Q13
7 marks Standard +0.3
  1. Show that
$$\int _ { 0 } ^ { 2 } 2 x \sqrt { x + 2 } \mathrm {~d} x = \frac { 32 } { 15 } ( 2 + \sqrt { 2 } )$$