OCR H240/03 2018 June — Question 5

Exam BoardOCR
ModuleH240/03 (Pure Mathematics and Mechanics)
Year2018
SessionJune
TopicIntegration by Substitution

5
  1. Use the trapezium rule, with two strips of equal width, to show that $$\int _ { 0 } ^ { 4 } \frac { 1 } { 2 + \sqrt { x } } \mathrm {~d} x \approx \frac { 11 } { 4 } - \sqrt { 2 }$$
  2. Use the substitution \(x = u ^ { 2 }\) to find the exact value of $$\int _ { 0 } ^ { 4 } \frac { 1 } { 2 + \sqrt { x } } \mathrm {~d} x$$
  3. Using your answers to parts (i) and (ii), show that $$\ln 2 \approx k + \frac { \sqrt { 2 } } { 4 }$$ where \(k\) is a rational number to be determined.