Find stationary points - mixed transcendental products

Find stationary points of curves involving products of different transcendental functions (e.g., y = e^(-3x)tan(x), y = e^(2x)(sin(x) + 3cos(x)), y = e^(3x)sec(2x)). Requires product rule with multiple transcendental functions.

9 questions · Standard +0.6

Sort by: Default | Easiest first | Hardest first
CAIE P3 2017 March Q5
7 marks Challenging +1.2
5 The curve with equation \(y = \mathrm { e } ^ { - a x } \tan x\), where \(a\) is a positive constant, has only one point in the interval \(0 < x < \frac { 1 } { 2 } \pi\) at which the tangent is parallel to the \(x\)-axis. Find the value of \(a\) and state the exact value of the \(x\)-coordinate of this point.
CAIE P3 2007 November Q4
6 marks Standard +0.3
4 The curve with equation \(y = \mathrm { e } ^ { - x } \sin x\) has one stationary point for which \(0 \leqslant x \leqslant \pi\).
  1. Find the \(x\)-coordinate of this point.
  2. Determine whether this point is a maximum or a minimum point.
CAIE P3 2009 November Q4
6 marks Standard +0.8
4 A curve has equation \(y = \mathrm { e } ^ { - 3 x } \tan x\). Find the \(x\)-coordinates of the stationary points on the curve in the interval \(- \frac { 1 } { 2 } \pi < x < \frac { 1 } { 2 } \pi\). Give your answers correct to 3 decimal places.
CAIE P3 2020 June Q4
6 marks Standard +0.8
4 The curve with equation \(y = \mathrm { e } ^ { 2 x } ( \sin x + 3 \cos x )\) has a stationary point in the interval \(0 \leqslant x \leqslant \pi\).
  1. Find the \(x\)-coordinate of this point, giving your answer correct to 2 decimal places.
  2. Determine whether the stationary point is a maximum or a minimum.
Edexcel P3 2020 October Q8
9 marks Standard +0.3
    1. The curve \(C\) has equation \(y = \mathrm { g } ( x )\) where
$$g ( x ) = e ^ { 3 x } \sec 2 x \quad - \frac { \pi } { 4 } < x < \frac { \pi } { 4 }$$
  1. Find \(\mathrm { g } ^ { \prime } ( x )\)
  2. Hence find the \(x\) coordinate of the stationary point of \(C\).
    (ii) A different curve has equation $$x = \ln ( \sin y ) \quad 0 < y < \frac { \pi } { 2 }$$ Show that $$\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { \mathrm { e } ^ { x } } { \mathrm { f } ( x ) }$$ where \(\mathrm { f } ( x )\) is a function of \(\mathrm { e } ^ { x }\) that should be found.
    VIXV SIHIANI III IM IONOOVIAV SIHI NI JYHAM ION OOVI4V SIHI NI JLIYM ION OO
Edexcel C3 2016 June Q5
10 marks Standard +0.3
5. (i) Find, using calculus, the \(x\) coordinate of the turning point of the curve with equation $$y = \mathrm { e } ^ { 3 x } \cos 4 x , \quad \frac { \pi } { 4 } \leqslant x < \frac { \pi } { 2 }$$ Give your answer to 4 decimal places.
(ii) Given \(x = \sin ^ { 2 } 2 y , \quad 0 < y < \frac { \pi } { 4 }\), find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) as a function of \(y\). Write your answer in the form $$\frac { \mathrm { d } y } { \mathrm {~d} x } = p \operatorname { cosec } ( q y ) , \quad 0 < y < \frac { \pi } { 4 }$$ where \(p\) and \(q\) are constants to be determined. \includegraphics[max width=\textwidth, alt={}, center]{d3ba2776-eedb-48f0-834f-41aa454afba3-09_2258_47_315_37}
OCR MEI C3 Q7
18 marks Standard +0.8
7 Fig. 8 shows part of the curve \(y = \mathrm { f } ( x )\), where \(\mathrm { f } ( x ) = \mathrm { e } ^ { - \frac { 1 } { 5 } x } \sin x\), for all \(x\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{8350e810-3ceb-4876-a7a8-249e17616057-4_645_1100_461_516} \captionsetup{labelformat=empty} \caption{Fig. 8}
\end{figure}
  1. Sketch the graphs of
    (A) \(y = \mathrm { f } ( 2 x )\),
    (B) \(y = \mathrm { f } ( x + \pi )\).
  2. Show that the \(x\)-coordinate of the turning point P satisfies the equation \(\tan x = 5\). Hence find the coordinates of P .
  3. Show that \(\mathrm { f } ( x + \pi ) = \mathrm { e } ^ { - \frac { 1 } { 5 } \pi } \mathrm { f } ( x )\). Hence, using the substitution \(u = x - \pi\), show that $$\int _ { \pi } ^ { 2 \pi } \mathrm { f } ( x ) \mathrm { d } x = \mathrm { e } ^ { - \frac { 1 } { 5 } \pi } \int _ { 0 } ^ { \pi } \mathrm { f } ( u ) \mathrm { d } u .$$ Interpret this result graphically. [You should not attempt to integrate \(\mathrm { f } ( x )\).]
OCR MEI C3 2015 June Q1
6 marks Standard +0.3
1 Fig. 1 shows part of the curve \(y = \mathrm { e } ^ { 2 x } \cos x\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{955bebfb-04a3-4cd9-a33e-a8ba4b73e2ba-2_670_1029_404_504} \captionsetup{labelformat=empty} \caption{Fig. 1}
\end{figure} Find the coordinates of the turning point P .
OCR C4 2015 June Q3
6 marks Standard +0.3
3 The equation of a curve is \(y = \mathrm { e } ^ { 2 x } \cos x\). Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) and hence find the coordinates of any stationary points for which \(- \pi \leqslant x \leqslant \pi\). Give your answers correct to 3 significant figures.