| Exam Board | Edexcel |
| Module | C3 (Core Mathematics 3) |
| Year | 2016 |
| Session | June |
| Topic | Differentiating Transcendental Functions |
5. (i) Find, using calculus, the \(x\) coordinate of the turning point of the curve with equation
$$y = \mathrm { e } ^ { 3 x } \cos 4 x , \quad \frac { \pi } { 4 } \leqslant x < \frac { \pi } { 2 }$$
Give your answer to 4 decimal places.
(ii) Given \(x = \sin ^ { 2 } 2 y , \quad 0 < y < \frac { \pi } { 4 }\), find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) as a function of \(y\).
Write your answer in the form
$$\frac { \mathrm { d } y } { \mathrm {~d} x } = p \operatorname { cosec } ( q y ) , \quad 0 < y < \frac { \pi } { 4 }$$
where \(p\) and \(q\) are constants to be determined.
\includegraphics[max width=\textwidth, alt={}, center]{d3ba2776-eedb-48f0-834f-41aa454afba3-09_2258_47_315_37}