Find stationary points - polynomial/exponential products

Find stationary points of curves involving products of polynomials with exponential functions (e.g., y = x²e^(-x), y = (x-2)e^x). Typically requires product rule and solving equations where one factor equals zero.

13 questions · Moderate -0.1

Sort by: Default | Easiest first | Hardest first
CAIE P1 2018 November Q11
12 marks Moderate -0.3
11
\includegraphics[max width=\textwidth, alt={}, center]{2d5f452d-f820-40fc-9e22-9d3ac4f0698b-18_661_698_260_717} The diagram shows part of the curve \(y = 3 \sqrt { } ( 4 x + 1 ) - 2 x\). The curve crosses the \(y\)-axis at \(A\) and the stationary point on the curve is \(M\).
  1. Obtain expressions for \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) and \(\int y \mathrm {~d} x\).
  2. Find the coordinates of \(M\).
  3. Find, showing all necessary working, the area of the shaded region.
    If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.
CAIE P2 2020 June Q2
5 marks Moderate -0.3
2 Find the exact coordinates of the stationary point on the curve with equation \(y = 5 x \mathrm { e } ^ { \frac { 1 } { 2 } x }\).
CAIE P2 2008 June Q6
7 marks Moderate -0.3
6 It is given that the curve \(y = ( x - 2 ) \mathrm { e } ^ { x }\) has one stationary point.
  1. Find the exact coordinates of this point.
  2. Determine whether this point is a maximum or a minimum point.
CAIE P3 2006 November Q3
6 marks Moderate -0.8
3 The curve with equation \(y = 6 \mathrm { e } ^ { x } - \mathrm { e } ^ { 3 x }\) has one stationary point.
  1. Find the \(x\)-coordinate of this point.
  2. Determine whether this point is a maximum or a minimum point.
CAIE P2 2013 November Q3
6 marks Standard +0.3
3 The equation of a curve is \(y = \frac { 1 } { 2 } \mathrm { e } ^ { 2 x } - 5 \mathrm { e } ^ { x } + 4 x\). Find the exact \(x\)-coordinate of each of the stationary points of the curve and determine the nature of each stationary point.
Edexcel P3 2022 January Q1
4 marks Moderate -0.8
  1. Find, using calculus, the \(x\) coordinate of the stationary point on the curve with equation
$$y = ( 2 x + 5 ) e ^ { 3 x }$$
Edexcel C34 2014 June Q11
12 marks Standard +0.3
11. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{423eb549-0873-4185-8faf-12dedafcd108-17_600_1024_221_470} \captionsetup{labelformat=empty} \caption{Figure 2}
\end{figure} Figure 2 shows a sketch of part of the curve \(C\) with equation $$y = \mathrm { e } ^ { a - 3 x } - 3 \mathrm { e } ^ { - x } , \quad x \in \mathbb { R }$$ where \(a\) is a constant and \(a > \ln 4\) The curve \(C\) has a turning point \(P\) and crosses the \(x\)-axis at the point \(Q\) as shown in Figure 2.
  1. Find, in terms of \(a\), the coordinates of the point \(P\).
  2. Find, in terms of \(a\), the \(x\) coordinate of the point \(Q\).
  3. Sketch the curve with equation $$y = \left| \mathrm { e } ^ { a - 3 x } - 3 \mathrm { e } ^ { - x } \right| , \quad x \in \mathbb { R } , \quad a > \ln 4$$ Show on your sketch the exact coordinates, in terms of \(a\), of the points at which the curve meets or cuts the coordinate axes.
OCR MEI C3 Q1
18 marks Standard +0.3
1 Fig. 8 shows the curve \(y = \mathrm { f } ( x )\), where \(\mathrm { f } ( x ) = ( 1 - x ) \mathrm { e } ^ { 2 x }\), with its turning point P . \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{75eebbfb-7bfa-4382-a6d7-1c5a7f3f419a-1_722_817_450_642} \captionsetup{labelformat=empty} \caption{Fig. 8}
\end{figure}
  1. Write down the coordinates of the intercepts of \(y = \mathrm { f } ( x )\) with the \(x\) - and \(y\)-axes.
  2. Find the exact coordinates of the turning point P .
  3. Show that the exact area of the region enclosed by the curve and the \(x\) - and \(y\)-axes is \(\frac { 1 } { 4 } \left( \mathrm { e } ^ { 2 } - 3 \right)\). The function \(\mathrm { g } ( x )\) is defined by \(\mathrm { g } ( x ) = 3 \mathrm { f } \left( \frac { 1 } { 2 } x \right)\).
  4. Express \(\mathrm { g } ( x )\) in terms of \(x\). Sketch the curve \(y = \mathrm { g } ( x )\) on the copy of Fig. 8, indicating the coordinates of its intercepts with the \(x\) - and \(y\)-axes and of its turning point.
  5. Write down the exact area of the region enclosed by the curve \(y = \mathrm { g } ( x )\) and the \(x\) - and \(y\)-axes.
OCR MEI C3 Q2
18 marks Standard +0.3
2 Fig. 9 shows the curve \(y = \mathrm { f } ( x )\), where $$\mathrm { f } ( x ) = \left( \mathrm { e } ^ { x } - 2 \right) ^ { 2 } - 1 , x \in \mathbb { R } .$$ The curve crosses the \(x\)-axis at O and P , and has a turning point at Q . \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{27f6c723-b199-48f1-ab18-22cc0b4b017b-2_866_979_576_573} \captionsetup{labelformat=empty} \caption{Fig. 9}
\end{figure}
  1. Find the exact \(x\)-coordinate of P .
  2. Show that the \(x\)-coordinate of Q is \(\ln 2\) and find its \(y\)-coordinate.
  3. Find the exact area of the region enclosed by the curve and the \(x\)-axis. The domain of \(\mathrm { f } ( x )\) is now restricted to \(x \geqslant \ln 2\).
  4. Find the inverse function \(\mathrm { f } ^ { - 1 } ( x )\). Write down its domain and range, and sketch its graph on the copy of Fig. 9.
OCR C3 2015 June Q5
8 marks Standard +0.3
5
\includegraphics[max width=\textwidth, alt={}, center]{00a4be37-c095-4d9c-a1cd-d03b8ab1d411-2_455_643_1327_694} The diagram shows the curve \(y = \mathrm { e } ^ { 3 x } - 6 \mathrm { e } ^ { 2 x } + 32\).
  1. Find the exact \(x\)-coordinate of the minimum point and verify that the \(y\)-coordinate of the minimum point is 0 .
  2. Find the exact area of the region (shaded in the diagram) enclosed by the curve and the axes.
OCR MEI C3 2013 June Q8
18 marks Moderate -0.3
8 Fig. 8 shows the curve \(y = \mathrm { f } ( x )\), where \(\mathrm { f } ( x ) = ( 1 - x ) \mathrm { e } ^ { 2 x }\), with its turning point P . \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{28ce1bcc-e9d5-4ae6-98c0-67b5b8c50bc6-5_716_810_404_609} \captionsetup{labelformat=empty} \caption{Fig. 8}
\end{figure}
  1. Write down the coordinates of the intercepts of \(y = \mathrm { f } ( x )\) with the \(x\) - and \(y\)-axes.
  2. Find the exact coordinates of the turning point P .
  3. Show that the exact area of the region enclosed by the curve and the \(x\) - and \(y\)-axes is \(\frac { 1 } { 4 } \left( e ^ { 2 } - 3 \right)\). The function \(\mathrm { g } ( x )\) is defined by \(\mathrm { g } ( x ) = 3 \mathrm { f } \left( \frac { 1 } { 2 } x \right)\).
  4. Express \(\mathrm { g } ( x )\) in terms of \(x\). Sketch the curve \(y = \mathrm { g } ( x )\) on the copy of Fig. 8, indicating the coordinates of its intercepts with the \(x\) - and \(y\)-axes and of its turning point.
  5. Write down the exact area of the region enclosed by the curve \(y = \mathrm { g } ( x )\) and the \(x\)-and \(y\)-axes.
OCR MEI C3 2015 June Q9
18 marks Standard +0.3
9 Fig. 9 shows the curve \(y = \mathrm { f } ( x )\), where $$\mathrm { f } ( x ) = \left( \mathrm { e } ^ { x } - 2 \right) ^ { 2 } - 1 , x \in \mathbb { R } .$$ The curve crosses the \(x\)-axis at O and P , and has a turning point at Q . \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{955bebfb-04a3-4cd9-a33e-a8ba4b73e2ba-5_867_988_497_525} \captionsetup{labelformat=empty} \caption{Fig. 9}
\end{figure}
  1. Find the exact \(x\)-coordinate of P .
  2. Show that the \(x\)-coordinate of Q is \(\ln 2\) and find its \(y\)-coordinate.
  3. Find the exact area of the region enclosed by the curve and the \(x\)-axis. The domain of \(\mathrm { f } ( x )\) is now restricted to \(x \geqslant \ln 2\).
  4. Find the inverse function \(\mathrm { f } ^ { - 1 } ( x )\). Write down its domain and range, and sketch its graph on the copy of Fig. 9.
OCR MEI C3 2016 June Q9
18 marks Standard +0.3
9 Fig. 9 shows the curve \(y = \mathrm { f } ( x )\), where \(\mathrm { f } ( x ) = \mathrm { e } ^ { 2 x } + k \mathrm { e } ^ { - 2 x }\) and \(k\) is a constant greater than 1 . The curve crosses the \(y\)-axis at P and has a turning point Q . \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{414a6b7f-cd96-4fa0-9521-ebe500bab375-4_783_951_392_557} \captionsetup{labelformat=empty} \caption{Fig. 9}
\end{figure}
  1. Find the \(y\)-coordinate of P in terms of \(k\).
  2. Show that the \(x\)-coordinate of Q is \(\frac { 1 } { 4 } \ln k\), and find the \(y\)-coordinate in its simplest form.
  3. Find, in terms of \(k\), the area of the region enclosed by the curve, the \(x\)-axis, the \(y\)-axis and the line \(x = \frac { 1 } { 2 } \ln k\). Give your answer in the form \(a k + b\). The function \(\mathrm { g } ( x )\) is defined by \(\mathrm { g } ( x ) = \mathrm { f } \left( x + \frac { 1 } { 4 } \ln k \right)\).
  4. (A) Show that \(\mathrm { g } ( x ) = \sqrt { k } \left( \mathrm { e } ^ { 2 x } + \mathrm { e } ^ { - 2 x } \right)\).
    (B) Hence show that \(\mathrm { g } ( x )\) is an even function.
    (C) Deduce, with reasons, a geometrical property of the curve \(y = \mathrm { f } ( x )\). \section*{END OF QUESTION PAPER}