Solve equation involving derivatives

Show that stationary points or other conditions lead to a specific equation, then solve it (often requiring substitution like z = e^x).

7 questions · Standard +0.6

Sort by: Default | Easiest first | Hardest first
CAIE P2 2022 June Q6
8 marks Standard +0.8
6 A curve has equation \(y = \frac { 9 \mathrm { e } ^ { 2 x } + 16 } { \mathrm { e } ^ { x } - 1 }\).
  1. Show that the \(x\)-coordinate of any stationary point on the curve satisfies the equation $$\mathrm { e } ^ { x } \left( 3 \mathrm { e } ^ { x } - 8 \right) \left( 3 \mathrm { e } ^ { x } + 2 \right) = 0$$
  2. Hence show that the curve has only one stationary point and find its exact coordinates.
Edexcel P2 2023 June Q7
8 marks Standard +0.3
  1. The height of a river above a fixed point on the riverbed was monitored over a 7-day period.
The height of the river, \(H\) metres, \(t\) days after monitoring began, was given by $$H = \frac { \sqrt { t } } { 20 } \left( 20 + 6 t - t ^ { 2 } \right) + 17 \quad 0 \leqslant t \leqslant 7$$ Given that \(H\) has a stationary value at \(t = \alpha\)
  1. use calculus to show that \(\alpha\) satisfies the equation $$5 \alpha ^ { 2 } - 18 \alpha - 20 = 0$$
  2. Hence find the value of \(\alpha\), giving your answer to 3 decimal places.
  3. Use further calculus to prove that \(H\) is a maximum at this value of \(\alpha\).
Edexcel P3 2024 January Q6
7 marks Challenging +1.2
6. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{76989f19-2624-4e86-a8ee-4978dd1014c2-14_741_844_258_612} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} In this question you must show all stages of your working. Solutions relying entirely on calculator technology are not acceptable. Figure 1 shows a sketch of the curve with equation \(y = \mathrm { f } ( x )\), where $$f ( x ) = 2 e ^ { 3 \sin x } \cos x \quad 0 \leqslant x \leqslant 2 \pi$$ The curve intersects the \(x\)-axis at point \(R\), as shown in Figure 1.
  1. State the coordinates of \(R\) The curve has two turning points, at point \(P\) and point \(Q\), also shown in Figure 1.
  2. Show that, at points \(P\) and \(Q\), $$a \sin ^ { 2 } x + b \sin x + c = 0$$ where \(a\), \(b\) and \(c\) are integers to be found.
  3. Hence find the \(x\) coordinate of point \(Q\), giving your answer to 3 decimal places.
Edexcel P3 2022 June Q9
9 marks Standard +0.8
9. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{44035bf8-f54c-472a-b969-b4fa4fa3d203-30_773_775_255_587} \captionsetup{labelformat=empty} \caption{Figure 5}
\end{figure} In this question you must show all stages of your working. Solutions relying entirely on calculator technology are not acceptable. Figure 5 shows the curve with equation $$y = \frac { 1 + 2 \cos x } { 1 + \sin x } \quad - \frac { \pi } { 2 } < x < \frac { 3 \pi } { 2 }$$ The point \(M\), shown in Figure 5, is the minimum point on the curve.
  1. Show that the \(x\) coordinate of \(M\) is a solution of the equation $$2 \sin x + \cos x = - 2$$
  2. Hence find, to 3 significant figures, the \(x\) coordinate of \(M\).
Edexcel Paper 1 2019 June Q12
10 marks Standard +0.3
12. $$\mathrm { f } ( x ) = 10 \mathrm { e } ^ { - 0.25 x } \sin x , \quad x \geqslant 0$$
  1. Show that the \(x\) coordinates of the turning points of the curve with equation \(y = \mathrm { f } ( x )\) satisfy the equation \(\tan x = 4\) \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{91a2f26a-add2-4b58-997d-2ae229548217-34_687_1029_495_518} \captionsetup{labelformat=empty} \caption{Figure 3}
    \end{figure} Figure 3 shows a sketch of part of the curve with equation \(y = \mathrm { f } ( x )\).
  2. Sketch the graph of \(H\) against \(t\) where $$\mathrm { H } ( t ) = \left| 10 \mathrm { e } ^ { - 0.25 t } \sin t \right| \quad t \geqslant 0$$ showing the long-term behaviour of this curve. The function \(\mathrm { H } ( t )\) is used to model the height, in metres, of a ball above the ground \(t\) seconds after it has been kicked. Using this model, find
  3. the maximum height of the ball above the ground between the first and second bounce.
  4. Explain why this model should not be used to predict the time of each bounce.
OCR MEI Paper 1 2023 June Q9
10 marks Standard +0.3
9 The gradient of a curve is given by \(\frac { d y } { d x } = e ^ { x } - 4 e ^ { - x }\).
  1. Show that the \(x\)-coordinate of any point on the curve at which the gradient is 3 satisfies the equation \(\left( e ^ { x } \right) ^ { 2 } - 3 e ^ { x } - 4 = 0\).
  2. Hence show that there is only one point on the curve at which the gradient is 3 , stating the exact value of its \(x\)-coordinate.
  3. The curve passes through the point \(( 0,0 )\). Show that when \(x = 1\) the curve is below the \(x\)-axis.
AQA C3 2006 June Q5
13 marks Standard +0.3
5
  1. A curve has equation \(y = \mathrm { e } ^ { 2 x } - 10 \mathrm { e } ^ { x } + 12 x\).
    1. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\).
      (2 marks)
    2. Find \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\).
      (1 mark)
  2. The points \(P\) and \(Q\) are the stationary points of the curve.
    1. Show that the \(x\)-coordinates of \(P\) and \(Q\) are given by the solutions of the equation $$\mathrm { e } ^ { 2 x } - 5 \mathrm { e } ^ { x } + 6 = 0$$ (1 mark)
    2. By using the substitution \(z = \mathrm { e } ^ { x }\), or otherwise, show that the \(x\)-coordinates of \(P\) and \(Q\) are \(\ln 2\) and \(\ln 3\).
    3. Find the \(y\)-coordinates of \(P\) and \(Q\), giving each of your answers in the form \(m + 12 \ln n\), where \(m\) and \(n\) are integers.
    4. Using the answer to part (a)(ii), determine the nature of each stationary point.