Edexcel P3 2024 January — Question 6

Exam BoardEdexcel
ModuleP3 (Pure Mathematics 3)
Year2024
SessionJanuary
TopicDifferentiating Transcendental Functions

6. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{76989f19-2624-4e86-a8ee-4978dd1014c2-14_741_844_258_612} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} In this question you must show all stages of your working. Solutions relying entirely on calculator technology are not acceptable. Figure 1 shows a sketch of the curve with equation \(y = \mathrm { f } ( x )\), where $$f ( x ) = 2 e ^ { 3 \sin x } \cos x \quad 0 \leqslant x \leqslant 2 \pi$$ The curve intersects the \(x\)-axis at point \(R\), as shown in Figure 1.
  1. State the coordinates of \(R\) The curve has two turning points, at point \(P\) and point \(Q\), also shown in Figure 1.
  2. Show that, at points \(P\) and \(Q\), $$a \sin ^ { 2 } x + b \sin x + c = 0$$ where \(a\), \(b\) and \(c\) are integers to be found.
  3. Hence find the \(x\) coordinate of point \(Q\), giving your answer to 3 decimal places.