AQA C3 2006 June — Question 5

Exam BoardAQA
ModuleC3 (Core Mathematics 3)
Year2006
SessionJune
TopicDifferentiating Transcendental Functions

5
  1. A curve has equation \(y = \mathrm { e } ^ { 2 x } - 10 \mathrm { e } ^ { x } + 12 x\).
    1. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\).
      (2 marks)
    2. Find \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\).
      (1 mark)
  2. The points \(P\) and \(Q\) are the stationary points of the curve.
    1. Show that the \(x\)-coordinates of \(P\) and \(Q\) are given by the solutions of the equation $$\mathrm { e } ^ { 2 x } - 5 \mathrm { e } ^ { x } + 6 = 0$$ (1 mark)
    2. By using the substitution \(z = \mathrm { e } ^ { x }\), or otherwise, show that the \(x\)-coordinates of \(P\) and \(Q\) are \(\ln 2\) and \(\ln 3\).
    3. Find the \(y\)-coordinates of \(P\) and \(Q\), giving each of your answers in the form \(m + 12 \ln n\), where \(m\) and \(n\) are integers.
    4. Using the answer to part (a)(ii), determine the nature of each stationary point.