Edexcel Paper 1 2019 June — Question 12

Exam BoardEdexcel
ModulePaper 1 (Paper 1)
Year2019
SessionJune
TopicDifferentiating Transcendental Functions

12. $$\mathrm { f } ( x ) = 10 \mathrm { e } ^ { - 0.25 x } \sin x , \quad x \geqslant 0$$
  1. Show that the \(x\) coordinates of the turning points of the curve with equation \(y = \mathrm { f } ( x )\) satisfy the equation \(\tan x = 4\) \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{91a2f26a-add2-4b58-997d-2ae229548217-34_687_1029_495_518} \captionsetup{labelformat=empty} \caption{Figure 3}
    \end{figure} Figure 3 shows a sketch of part of the curve with equation \(y = \mathrm { f } ( x )\).
  2. Sketch the graph of \(H\) against \(t\) where $$\mathrm { H } ( t ) = \left| 10 \mathrm { e } ^ { - 0.25 t } \sin t \right| \quad t \geqslant 0$$ showing the long-term behaviour of this curve. The function \(\mathrm { H } ( t )\) is used to model the height, in metres, of a ball above the ground \(t\) seconds after it has been kicked. Using this model, find
  3. the maximum height of the ball above the ground between the first and second bounce.
  4. Explain why this model should not be used to predict the time of each bounce.