Solve reciprocal trig equation

A question is this type if and only if it involves solving equations with cosec, sec, or cot that must be converted to an equation in sin and cos, then expressed in harmonic form.

7 questions · Standard +0.5

Sort by: Default | Easiest first | Hardest first
CAIE P2 2018 June Q7
11 marks
7
  1. Express \(5 \cos \theta - 2 \sin \theta\) in the form \(R \cos ( \theta + \alpha )\), where \(R > 0\) and \(0 < \alpha < \frac { 1 } { 2 } \pi\). Give the value of \(\alpha\) correct to 4 decimal places.
  2. Using your answer from part (i), solve the equation $$5 \cot \theta - 4 \operatorname { cosec } \theta = 2$$ for \(0 < \theta < 2 \pi\).
  3. Find \(\int \frac { 1 } { \left( 5 \cos \frac { 1 } { 2 } x - 2 \sin \frac { 1 } { 2 } x \right) ^ { 2 } } \mathrm {~d} x\).
    If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.
CAIE P3 2013 November Q7
10 marks Standard +0.8
7
  1. Given that \(\sec \theta + 2 \operatorname { cosec } \theta = 3 \operatorname { cosec } 2 \theta\), show that \(2 \sin \theta + 4 \cos \theta = 3\).
  2. Express \(2 \sin \theta + 4 \cos \theta\) in the form \(R \sin ( \theta + \alpha )\) where \(R > 0\) and \(0 ^ { \circ } < \alpha < 90 ^ { \circ }\), giving the value of \(\alpha\) correct to 2 decimal places.
  3. Hence solve the equation \(\sec \theta + 2 \operatorname { cosec } \theta = 3 \operatorname { cosec } 2 \theta\) for \(0 ^ { \circ } < \theta < 360 ^ { \circ }\).
CAIE P3 2018 November Q6
8 marks Challenging +1.2
6
  1. Show that the equation ( \(\sqrt { } 2\) ) \(\operatorname { cosec } x + \cot x = \sqrt { } 3\) can be expressed in the form \(R \sin ( x - \alpha ) = \sqrt { } 2\), where \(R > 0\) and \(0 ^ { \circ } < \alpha < 90 ^ { \circ }\).
  2. Hence solve the equation \(( \sqrt { } 2 ) \operatorname { cosec } x + \cot x = \sqrt { } 3\), for \(0 ^ { \circ } < x < 180 ^ { \circ }\).
Edexcel C3 2017 June Q4
9 marks Standard +0.3
  1. (a) Write \(5 \cos \theta - 2 \sin \theta\) in the form \(R \cos ( \theta + \alpha )\), where \(R\) and \(\alpha\) are constants, \(R > 0\) and \(0 \leqslant \alpha < \frac { \pi } { 2 }\)
Give the exact value of \(R\) and give the value of \(\alpha\) in radians to 3 decimal places.
(b) Show that the equation $$5 \cot 2 x - 3 \operatorname { cosec } 2 x = 2$$ can be rewritten in the form $$5 \cos 2 x - 2 \sin 2 x = c$$ where \(c\) is a positive constant to be determined.
(c) Hence or otherwise, solve, for \(0 \leqslant x < \pi\), $$5 \cot 2 x - 3 \operatorname { cosec } 2 x = 2$$ giving your answers to 2 decimal places.
(Solutions based entirely on graphical or numerical methods are not acceptable.)
OCR C3 Q7
8 marks Standard +0.3
7. (i) Express \(2 \sin x ^ { \circ } - 3 \cos x ^ { \circ }\) in the form \(R \sin ( x - \alpha ) ^ { \circ }\) where \(R > 0\) and \(0 < \alpha < 90\).
(ii) Show that the equation $$\operatorname { cosec } x ^ { \circ } + 3 \cot x ^ { \circ } = 2$$ can be written in the form $$2 \sin x ^ { \circ } - 3 \cos x ^ { \circ } = 1$$ (iii) Solve the equation $$\operatorname { cosec } x ^ { \circ } + 3 \cot x ^ { \circ } = 2$$ for \(x\) in the interval \(0 \leq x \leq 360\), giving your answers to 1 decimal place.
Edexcel C3 Q7
8 marks Standard +0.3
7. (a) Express \(\sin x + \sqrt { 3 } \cos x\) in the form \(R \sin ( x + \alpha )\), where \(R > 0\) and \(0 < \alpha < 90 ^ { \circ }\).
(b) Show that the equation \(\sec x + \sqrt { 3 } \operatorname { cosec } x = 4\) can be written in the form $$\sin x + \sqrt { 3 } \cos x = 2 \sin 2 x$$ (c) Deduce from parts (a) and (b) that \(\sec x + \sqrt { 3 } \operatorname { cosec } x = 4\) can be written in the form $$\sin 2 x - \sin \left( x + 60 ^ { \circ } \right) = 0$$ END
Edexcel C3 Q4
10 marks Standard +0.3
4. (a) Express \(2 \sin x ^ { \circ } - 3 \cos x ^ { \circ }\) in the form \(R \sin ( x - \alpha ) ^ { \circ }\) where \(R > 0\) and \(0 < \alpha < 90\).
(b) Show that the equation $$\operatorname { cosec } x ^ { \circ } + 3 \cot x ^ { \circ } = 2$$ can be written in the form $$2 \sin x ^ { \circ } - 3 \cos x ^ { \circ } = 1 .$$ (c) Solve the equation $$\operatorname { cosec } x ^ { \circ } + 3 \cot x ^ { \circ } = 2 ,$$ for \(x\) in the interval \(0 \leq x \leq 360\), giving your answers to 1 decimal place.