Show that the equation ( \(\sqrt { } 2\) ) \(\operatorname { cosec } x + \cot x = \sqrt { } 3\) can be expressed in the form \(R \sin ( x - \alpha ) = \sqrt { } 2\), where \(R > 0\) and \(0 ^ { \circ } < \alpha < 90 ^ { \circ }\).
Hence solve the equation \(( \sqrt { } 2 ) \operatorname { cosec } x + \cot x = \sqrt { } 3\), for \(0 ^ { \circ } < x < 180 ^ { \circ }\).