CAIE P2 2018 June — Question 7

Exam BoardCAIE
ModuleP2 (Pure Mathematics 2)
Year2018
SessionJune
TopicHarmonic Form

7
  1. Express \(5 \cos \theta - 2 \sin \theta\) in the form \(R \cos ( \theta + \alpha )\), where \(R > 0\) and \(0 < \alpha < \frac { 1 } { 2 } \pi\). Give the value of \(\alpha\) correct to 4 decimal places.
  2. Using your answer from part (i), solve the equation $$5 \cot \theta - 4 \operatorname { cosec } \theta = 2$$ for \(0 < \theta < 2 \pi\).
  3. Find \(\int \frac { 1 } { \left( 5 \cos \frac { 1 } { 2 } x - 2 \sin \frac { 1 } { 2 } x \right) ^ { 2 } } \mathrm {~d} x\).
    If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.