OCR C3 — Question 7

Exam BoardOCR
ModuleC3 (Core Mathematics 3)
TopicHarmonic Form

7. (i) Express \(2 \sin x ^ { \circ } - 3 \cos x ^ { \circ }\) in the form \(R \sin ( x - \alpha ) ^ { \circ }\) where \(R > 0\) and \(0 < \alpha < 90\).
(ii) Show that the equation $$\operatorname { cosec } x ^ { \circ } + 3 \cot x ^ { \circ } = 2$$ can be written in the form $$2 \sin x ^ { \circ } - 3 \cos x ^ { \circ } = 1$$ (iii) Solve the equation $$\operatorname { cosec } x ^ { \circ } + 3 \cot x ^ { \circ } = 2$$ for \(x\) in the interval \(0 \leq x \leq 360\), giving your answers to 1 decimal place.