| Exam Board | OCR |
| Module | C3 (Core Mathematics 3) |
| Topic | Harmonic Form |
7. (i) Express \(2 \sin x ^ { \circ } - 3 \cos x ^ { \circ }\) in the form \(R \sin ( x - \alpha ) ^ { \circ }\) where \(R > 0\) and \(0 < \alpha < 90\).
(ii) Show that the equation
$$\operatorname { cosec } x ^ { \circ } + 3 \cot x ^ { \circ } = 2$$
can be written in the form
$$2 \sin x ^ { \circ } - 3 \cos x ^ { \circ } = 1$$
(iii) Solve the equation
$$\operatorname { cosec } x ^ { \circ } + 3 \cot x ^ { \circ } = 2$$
for \(x\) in the interval \(0 \leq x \leq 360\), giving your answers to 1 decimal place.