Deduce related solution

Use the solution of one equation to deduce the solution of a related equation with transformed arguments.

12 questions · Standard +0.1

Sort by: Default | Easiest first | Hardest first
CAIE P1 2012 November Q7
7 marks Standard +0.3
7
  1. Solve the equation \(2 \cos ^ { 2 } \theta = 3 \sin \theta\), for \(0 ^ { \circ } \leqslant \theta \leqslant 360 ^ { \circ }\).
  2. The smallest positive solution of the equation \(2 \cos ^ { 2 } ( n \theta ) = 3 \sin ( n \theta )\), where \(n\) is a positive integer, is \(10 ^ { \circ }\). State the value of \(n\) and hence find the largest solution of this equation in the interval \(0 ^ { \circ } \leqslant \theta \leqslant 360 ^ { \circ }\).
CAIE P1 2013 November Q4
6 marks Moderate -0.3
4
  1. Solve the equation \(4 \sin ^ { 2 } x + 8 \cos x - 7 = 0\) for \(0 ^ { \circ } \leqslant x \leqslant 360 ^ { \circ }\).
  2. Hence find the solution of the equation \(4 \sin ^ { 2 } \left( \frac { 1 } { 2 } \theta \right) + 8 \cos \left( \frac { 1 } { 2 } \theta \right) - 7 = 0\) for \(0 ^ { \circ } \leqslant \theta \leqslant 360 ^ { \circ }\).
Edexcel C12 2016 January Q8
6 marks Moderate -0.3
8. (a) Given that \(7 \sin x = 3 \cos x\), find the exact value of \(\tan x\).
(b) Hence solve for \(0 \leqslant \theta < 360 ^ { \circ }\) $$7 \sin \left( 2 \theta + 30 ^ { \circ } \right) = 3 \cos \left( 2 \theta + 30 ^ { \circ } \right)$$ giving your answers to one decimal place.
(Solutions based entirely on graphical or numerical methods are not acceptable.)
Edexcel P2 2023 October Q3
7 marks Standard +0.3
  1. In this question you must show all stages of your working.
Solutions relying entirely on calculator technology are not acceptable.
  1. Solve, for \(0 < \theta \leqslant 360 ^ { \circ }\) the equation $$2 \tan \theta + 3 \sin \theta = 0$$ giving your answers, as appropriate, to one decimal place.
  2. Hence, or otherwise, find the smallest positive solution of $$2 \tan \left( 2 x + 40 ^ { \circ } \right) + 3 \sin \left( 2 x + 40 ^ { \circ } \right) = 0$$ giving your answer to one decimal place.
Edexcel C2 2010 June Q5
6 marks Moderate -0.3
5. (a) Given that \(5 \sin \theta = 2 \cos \theta\), find the value of \(\tan \theta\).
(b) Solve, for \(0 \leqslant x < 360 ^ { \circ }\), $$5 \sin 2 x = 2 \cos 2 x$$ giving your answers to 1 decimal place.
OCR C2 Q3
6 marks Moderate -0.8
3. (i) Given that $$5 \cos \theta - 2 \sin \theta = 0$$ show that \(\tan \theta = 2.5\) (ii) Solve, for \(0 \leq x \leq 180\), the equation $$5 \cos 2 x ^ { \circ } - 2 \sin 2 x ^ { \circ } = 0 ,$$ giving your answers to 1 decimal place.
Edexcel PMT Mocks Q14
8 marks Standard +0.3
14. Given that $$2 \cos ( x + 60 ) ^ { 0 } = \sin ( x - 30 ) ^ { 0 }$$ a. Show, without using a calculator, that $$\tan x = \frac { \sqrt { 3 } } { 3 }$$ b. Hence solve, for \(0 \leq \theta < 360 ^ { 0 }\) $$2 \cos ( 2 \theta + 90 ) ^ { 0 } = \sin ( 2 \theta ) ^ { 0 }$$
Edexcel Paper 1 2019 June Q6
8 marks Standard +0.3
  1. (a) Solve, for \(- 180 ^ { \circ } \leqslant \theta \leqslant 180 ^ { \circ }\), the equation
$$5 \sin 2 \theta = 9 \tan \theta$$ giving your answers, where necessary, to one decimal place.
[0pt] [Solutions based entirely on graphical or numerical methods are not acceptable.]
(b) Deduce the smallest positive solution to the equation $$5 \sin \left( 2 x - 50 ^ { \circ } \right) = 9 \tan \left( x - 25 ^ { \circ } \right)$$
Edexcel Paper 2 Specimen Q12
8 marks Standard +0.3
  1. (a) Solve, for \(- 180 ^ { \circ } \leqslant x < 180 ^ { \circ }\), the equation
$$3 \sin ^ { 2 } x + \sin x + 8 = 9 \cos ^ { 2 } x$$ giving your answers to 2 decimal places.
(b) Hence find the smallest positive solution of the equation $$3 \sin ^ { 2 } \left( 2 \theta - 30 ^ { \circ } \right) + \sin \left( 2 \theta - 30 ^ { \circ } \right) + 8 = 9 \cos ^ { 2 } \left( 2 \theta - 30 ^ { \circ } \right)$$ giving your answer to 2 decimal places.
AQA AS Paper 1 2021 June Q8
7 marks Standard +0.3
8
    1. Show that the equation $$3 \sin \theta \tan \theta = 5 \cos \theta - 2$$ is equivalent to the equation $$( 4 \cos \theta - 3 ) ( 2 \cos \theta + 1 ) = 0$$ 8
  1. (ii) Solve the equation $$3 \sin \theta \tan \theta = 5 \cos \theta - 2$$ for \(- 180 ^ { \circ } \leq \theta \leq 180 ^ { \circ }\) 8
  2. Hence, deduce all the solutions of the equation $$3 \sin \left( \frac { 1 } { 2 } \theta \right) \tan \left( \frac { 1 } { 2 } \theta \right) = 5 \cos \left( \frac { 1 } { 2 } \theta \right) - 2$$ for \(- 180 ^ { \circ } \leq \theta \leq 180 ^ { \circ }\), giving your answers to the nearest degree.
    [0pt] [2 marks]
AQA AS Paper 1 2024 June Q4
7 marks Standard +0.3
4
    1. By using a suitable trigonometric identity, show that the equation $$\sin \theta \tan \theta = 4 \cos \theta$$ can be written as $$\tan ^ { 2 } \theta = 4$$ 4
  1. (ii) Hence solve the equation $$\sin \theta \tan \theta = 4 \cos \theta$$ where \(0 ^ { \circ } < \theta < 360 ^ { \circ }\) Give your answers to the nearest degree.
    4
  2. Deduce all solutions of the equation $$\sin 3 \alpha \tan 3 \alpha = 4 \cos 3 \alpha$$ where \(0 ^ { \circ } < \alpha < 180 ^ { \circ }\) Give your answers to the nearest degree.
AQA Paper 1 2021 June Q8
9 marks Standard +0.8
8
  1. Given that $$9 \sin ^ { 2 } \theta + \sin 2 \theta = 8$$ show that $$8 \cot ^ { 2 } \theta - 2 \cot \theta - 1 = 0$$ 8
  2. Hence, solve $$9 \sin ^ { 2 } \theta + \sin 2 \theta = 8$$ in the interval \(0 < \theta < 2 \pi\) Give your answers to two decimal places.
    8
  3. Solve $$9 \sin ^ { 2 } \left( 2 x - \frac { \pi } { 4 } \right) + \sin \left( 4 x - \frac { \pi } { 2 } \right) = 8$$ in the interval \(0 < x < \frac { \pi } { 2 }\) Give your answers to one decimal place.