| Exam Board | AQA |
| Module | AS Paper 1 (AS Paper 1) |
| Year | 2021 |
| Session | June |
| Marks | 2 |
| Topic | Trig Equations |
8
- Show that the equation
$$3 \sin \theta \tan \theta = 5 \cos \theta - 2$$
is equivalent to the equation
$$( 4 \cos \theta - 3 ) ( 2 \cos \theta + 1 ) = 0$$
8
- (ii) Solve the equation
$$3 \sin \theta \tan \theta = 5 \cos \theta - 2$$
for \(- 180 ^ { \circ } \leq \theta \leq 180 ^ { \circ }\)
8 - Hence, deduce all the solutions of the equation
$$3 \sin \left( \frac { 1 } { 2 } \theta \right) \tan \left( \frac { 1 } { 2 } \theta \right) = 5 \cos \left( \frac { 1 } { 2 } \theta \right) - 2$$
for \(- 180 ^ { \circ } \leq \theta \leq 180 ^ { \circ }\), giving your answers to the nearest degree.
[0pt]
[2 marks]