Rotation about x-axis, standard curve

A question is this type if and only if it asks for the volume when a region bounded by a single curve (not involving parametric, implicit, or piecewise definitions) and lines parallel to the axes is rotated about the x-axis.

38 questions · Moderate -0.2

Sort by: Default | Easiest first | Hardest first
OCR C3 2012 January Q2
5 marks Moderate -0.3
2 \includegraphics[max width=\textwidth, alt={}, center]{89e54367-bb83-483a-add5-0527b71a5cac-2_490_713_447_660} The diagram shows part of the curve \(y = \frac { 6 } { ( 2 x + 1 ) ^ { 2 } }\). The shaded region is bounded by the curve and the lines \(x = 0 , x = 1\) and \(y = 0\). Find the exact volume of the solid produced when this shaded region is rotated completely about the \(x\)-axis.
OCR C3 2013 January Q5
9 marks Standard +0.3
5 \includegraphics[max width=\textwidth, alt={}, center]{b8ff33d4-dfe5-4067-855e-86d5765cc249-2_454_770_1628_635} The diagram shows the curve \(y = \frac { 6 } { \sqrt { 3 x + 1 } }\). The shaded region is bounded by the curve and the lines \(x = 2 , x = 9\) and \(y = 0\).
  1. Show that the area of the shaded region is \(4 \sqrt { 7 }\) square units.
  2. The shaded region is rotated completely about the \(x\)-axis. Show that the volume of the solid produced can be written in the form \(k \ln 2\), where the exact value of the constant \(k\) is to be determined.
OCR C3 2009 June Q2
5 marks Moderate -0.3
2 \includegraphics[max width=\textwidth, alt={}, center]{6a690aa5-63a7-4569-afa8-0746814ebab4-2_477_833_1493_657} The diagram shows the curve with equation \(y = ( 2 x - 3 ) ^ { 2 }\). The shaded region is bounded by the curve and the lines \(x = 0\) and \(y = 0\). Find the exact volume obtained when the shaded region is rotated completely about the \(x\)-axis.
OCR C3 2014 June Q7
10 marks Standard +0.3
7 \includegraphics[max width=\textwidth, alt={}, center]{33a2b09d-0df9-48d6-9ee9-e0a1ec345f41-3_547_851_1749_605} The diagram shows the curve \(y = \sqrt { \frac { 3 } { 4 x + 1 } }\) for \(0 \leqslant x \leqslant 20\). The point \(P\) on the curve has coordinates \(\left( 20 , \frac { 1 } { 9 } \sqrt { 3 } \right)\). The shaded region \(R\) is enclosed by the curve and the lines \(x = 0\) and \(y = \frac { 1 } { 9 } \sqrt { 3 }\).
  1. Find the exact area of \(R\).
  2. Find the exact volume of the solid obtained when \(R\) is rotated completely about the \(x\)-axis.
OCR Further Pure Core 2 Specimen Q2
4 marks Standard +0.3
2 In this question you must show detailed reasoning. The finite region \(R\) is enclosed by the curve with equation \(y = \frac { 8 } { \sqrt { 16 + x ^ { 2 } } }\), the \(x\)-axis and the lines \(x = 0\) and \(x = 4\). Region \(R\) is rotated through \(360 ^ { \circ }\) about the \(x\)-axis. Find the exact value of the volume generated. [4]
  1. Find \(\sum _ { r = 1 } ^ { n } \left( \frac { 1 } { r } - \frac { 1 } { r + 2 } \right)\).
  2. What does the sum in part (i) tend to as \(n \rightarrow \infty\) ? Justify your answer.
AQA C3 2005 June Q6
13 marks Moderate -0.3
6
    1. Sketch the graph of \(y = 4 - x ^ { 2 }\), indicating the coordinates of the points where the graph crosses the coordinate axes.
    2. The region between the graph and the \(x\)-axis from \(x = 0\) to \(x = 2\) is rotated through \(360 ^ { \circ }\) about the \(x\)-axis. Find the exact value of the volume of the solid generated.
    1. Sketch the graph of \(y = \left| 4 - x ^ { 2 } \right|\).
    2. Solve \(\left| 4 - x ^ { 2 } \right| = 3\).
    3. Hence, or otherwise, solve the inequality \(\left| 4 - x ^ { 2 } \right| < 3\).
Edexcel C4 Q1
6 marks Moderate -0.3
  1. The region bounded by the curve \(y = x ^ { 2 } - 2 x\) and the \(x\)-axis is rotated through \(2 \pi\) radians about the \(x\)-axis.
Find the volume of the solid formed, giving your answer in terms of \(\pi\).
OCR MEI Further Pure Core 2024 June Q4
4 marks Standard +0.8
4 The equation of a curve is \(\mathrm { y } = \frac { 1 } { \sqrt { \mathrm {~K} ^ { 2 } + \mathrm { x } ^ { 2 } } }\), where \(k\) is a positive constant. The region between the \(x\)-axis, the \(y\)-axis and the line \(x = k\) is rotated through \(2 \pi\) radians about the \(x\)-axis. Given that the volume of the solid of revolution formed is 1 unit \({ } ^ { 3 }\), find the exact value of \(k\).
Edexcel CP AS 2019 June Q9
8 marks Standard +0.8
9. $$\mathrm { f } ( x ) = 2 x ^ { \frac { 1 } { 3 } } + x ^ { - \frac { 2 } { 3 } } \quad x > 0$$ The finite region bounded by the curve \(y = \mathrm { f } ( x )\), the line \(x = \frac { 1 } { 8 }\), the \(x\)-axis and the line \(x = 8\) is rotated through \(\theta\) radians about the \(x\)-axis to form a solid of revolution. Given that the volume of the solid formed is \(\frac { 461 } { 2 }\) units cubed, use algebraic integration to find the angle \(\theta\) through which the region is rotated.
AQA C3 2009 January Q2
4 marks Moderate -0.3
2 The diagram shows the curve with equation \(y = \sqrt { ( x - 2 ) ^ { 5 } }\) for \(x \geqslant 2\). \includegraphics[max width=\textwidth, alt={}, center]{59b896ae-60ce-49ea-9c70-0f76fc5fffae-2_885_1125_854_461} The shaded region \(R\) is bounded by the curve \(y = \sqrt { ( x - 2 ) ^ { 5 } }\), the \(x\)-axis and the lines \(x = 3\) and \(x = 4\). Find the exact value of the volume of the solid formed when the region \(R\) is rotated through \(360 ^ { \circ }\) about the \(x\)-axis.
AQA C3 2007 June Q2
9 marks Moderate -0.3
2
  1. Differentiate \(( x - 1 ) ^ { 4 }\) with respect to \(x\).
  2. The diagram shows the curve with equation \(y = 2 \sqrt { ( x - 1 ) ^ { 3 } }\) for \(x \geqslant 1\). \includegraphics[max width=\textwidth, alt={}, center]{9fd9fa54-b0e6-413d-8645-de34b99b859a-02_789_1180_1190_431} The shaded region \(R\) is bounded by the curve \(y = 2 \sqrt { ( x - 1 ) ^ { 3 } }\), the lines \(x = 2\) and \(x = 4\), and the \(x\)-axis. Find the exact value of the volume of the solid formed when the region \(R\) is rotated through \(360 ^ { \circ }\) about the \(x\)-axis.
  3. Describe a sequence of two geometrical transformations that maps the graph of \(y = \sqrt { x ^ { 3 } }\) onto the graph of \(y = 2 \sqrt { ( x - 1 ) ^ { 3 } }\).
AQA Further AS Paper 1 2024 June Q2
1 marks Easy -1.8
2 The function f is defined by $$f ( x ) = 2 x + 3 \quad 0 \leq x \leq 5$$ The region \(R\) is enclosed by \(y = \mathrm { f } ( x ) , x = 5\), the \(x\)-axis and the \(y\)-axis.
The region \(R\) is rotated through \(2 \pi\) radians about the \(x\)-axis.
Give an expression for the volume of the solid formed.
Tick ( ✓ ) one box. \(\pi \int _ { 0 } ^ { 5 } ( 2 x + 3 ) d x\) \includegraphics[max width=\textwidth, alt={}, center]{47b12ae4-ca3f-472c-9d15-2ef17a2a4d87-02_113_108_1539_1000} \(\pi \int _ { 0 } ^ { 5 } ( 2 x + 3 ) ^ { 2 } \mathrm {~d} x\) \includegraphics[max width=\textwidth, alt={}, center]{47b12ae4-ca3f-472c-9d15-2ef17a2a4d87-02_115_108_1699_1000} \(2 \pi \int _ { 0 } ^ { 5 } ( 2 x + 3 ) d x\) □ \(2 \pi \int _ { 0 } ^ { 5 } ( 2 x + 3 ) ^ { 2 } \mathrm {~d} x\) □
AQA Further AS Paper 1 Specimen Q5
5 marks Moderate -0.3
5 The region bounded by the curve with equation \(y = 3 + \sqrt { x }\), the \(x\)-axis and the lines \(x = 1\) and \(x = 4\) is rotated through \(2 \pi\) radians about the \(x\)-axis. Use integration to show that the volume generated is \(\frac { 125 \pi } { 2 }\) [0pt] [5 marks]