| Exam Board | Edexcel |
| Module | CP AS (Core Pure AS) |
| Year | 2019 |
| Session | June |
| Topic | Volumes of Revolution |
9.
$$\mathrm { f } ( x ) = 2 x ^ { \frac { 1 } { 3 } } + x ^ { - \frac { 2 } { 3 } } \quad x > 0$$
The finite region bounded by the curve \(y = \mathrm { f } ( x )\), the line \(x = \frac { 1 } { 8 }\), the \(x\)-axis and the line \(x = 8\) is rotated through \(\theta\) radians about the \(x\)-axis to form a solid of revolution.
Given that the volume of the solid formed is \(\frac { 461 } { 2 }\) units cubed, use algebraic integration to find the angle \(\theta\) through which the region is rotated.