Trapezium rule estimation

Use the trapezium rule with a specified number of intervals to estimate a definite integral, and often determine if it's an over- or under-estimate.

11 questions · Moderate -0.6

Sort by: Default | Easiest first | Hardest first
CAIE P2 2002 June Q6
10 marks Moderate -0.3
6
    1. Show that \(\int _ { 0 } ^ { \frac { 1 } { 4 } \pi } \cos 2 x \mathrm {~d} x = \frac { 1 } { 2 }\).
    2. By using an appropriate trigonometrical identity, find the exact value of \(\int _ { 0 } ^ { \frac { 1 } { 4 } \pi } \sin ^ { 2 } x \mathrm {~d} x\).
    1. Use the trapezium rule with 2 intervals to estimate the value of \(\int _ { 0 } ^ { \frac { 1 } { 4 } \pi } \sec x d x\), giving your answer correct to 2 significant figures.
    2. Determine, by sketching the appropriate part of the graph of \(y = \sec x\), whether the trapezium rule gives an under-estimate or an over-estimate of the true value.
CAIE P2 2003 June Q6
8 marks Moderate -0.3
6 The equation of a curve is \(y = \frac { 1 } { 1 + \tan x }\).
  1. Show, by differentiation, that the gradient of the curve is always negative.
  2. Use the trapezium rule with 2 intervals to estimate the value of $$\int _ { 0 } ^ { \frac { 1 } { 4 } \pi } \frac { 1 } { 1 + \tan x } \mathrm {~d} x$$ giving your answer correct to 2 significant figures.
  3. \includegraphics[max width=\textwidth, alt={}, center]{a31a4b4e-83a6-47d9-9679-3471b3da1b6e-3_556_802_1384_708} The diagram shows a sketch of the curve for \(0 \leqslant x \leqslant \frac { 1 } { 4 } \pi\). State, with a reason, whether the trapezium rule gives an under-estimate or an over-estimate of the true value of the integral in part (ii).
CAIE P2 2004 June Q5
8 marks Moderate -0.8
5 \includegraphics[max width=\textwidth, alt={}, center]{34177829-f05d-449e-8881-5ab4d852c4ce-3_458_643_285_751} The diagram shows the part of the curve \(y = x \mathrm { e } ^ { - x }\) for \(0 \leqslant x \leqslant 2\), and its maximum point \(M\).
  1. Find the \(x\)-coordinate of \(M\).
  2. Use the trapezium rule with two intervals to estimate the value of $$\int _ { 0 } ^ { 2 } x \mathrm { e } ^ { - x } \mathrm {~d} x$$ giving your answer correct to 2 decimal places.
  3. State, with a reason, whether the trapezium rule gives an under-estimate or an over-estimate of the true value of the integral in part (ii).
CAIE P2 2005 June Q6
10 marks Moderate -0.3
6 \includegraphics[max width=\textwidth, alt={}, center]{08210e25-0f0e-405b-b72d-1bf989689b0a-3_641_865_264_641} The diagram shows the part of the curve \(y = \frac { \ln x } { x }\) for \(0 < x \leqslant 4\). The curve cuts the \(x\)-axis at \(A\) and its maximum point is \(M\).
  1. Write down the coordinates of \(A\).
  2. Show that the \(x\)-coordinate of \(M\) is e, and write down the \(y\)-coordinate of \(M\) in terms of e.
  3. Use the trapezium rule with three intervals to estimate the value of $$\int _ { 1 } ^ { 4 } \frac { \ln x } { x } \mathrm {~d} x$$ correct to 2 decimal places.
  4. State, with a reason, whether the trapezium rule gives an under-estimate or an over-estimate of the true value of the integral in part (iii).
CAIE P2 2007 June Q7
9 marks Moderate -0.3
7 \includegraphics[max width=\textwidth, alt={}, center]{9d93ad8c-0a22-4de7-8342-387606e4e510-3_584_675_945_735} The diagram shows the part of the curve \(y = \mathrm { e } ^ { x } \cos x\) for \(0 \leqslant x \leqslant \frac { 1 } { 2 } \pi\). The curve meets the \(y\)-axis at the point \(A\). The point \(M\) is a maximum point.
  1. Write down the coordinates of \(A\).
  2. Find the \(x\)-coordinate of \(M\).
  3. Use the trapezium rule with three intervals to estimate the value of $$\int _ { 0 } ^ { \frac { 1 } { 2 } \pi } e ^ { x } \cos x d x$$ giving your answer correct to 2 decimal places.
  4. State, with a reason, whether the trapezium rule gives an under-estimate or an over-estimate of the true value of the integral in part (iii).
CAIE P2 2009 June Q3
4 marks Moderate -0.8
3 \includegraphics[max width=\textwidth, alt={}, center]{b9556031-871d-4dd3-9523-e3438a41339f-2_451_775_559_683} The diagram shows the curve \(y = \frac { 1 } { 1 + \sqrt { } x }\) for values of \(x\) from 0 to 2 .
  1. Use the trapezium rule with two intervals to estimate the value of $$\int _ { 0 } ^ { 2 } \frac { 1 } { 1 + \sqrt { } x } \mathrm {~d} x$$ giving your answer correct to 2 decimal places.
  2. State, with a reason, whether the trapezium rule gives an under-estimate or an over-estimate of the true value of the integral in part (i).
CAIE P2 2010 June Q2
4 marks Moderate -0.8
2 \includegraphics[max width=\textwidth, alt={}, center]{f55e1431-9443-40d7-bec0-6f5c1d9fa2d7-2_531_949_431_598} The diagram shows part of the curve \(y = x \mathrm { e } ^ { - x }\). The shaded region \(R\) is bounded by the curve and by the lines \(x = 2 , x = 3\) and \(y = 0\).
  1. Use the trapezium rule with two intervals to estimate the area of \(R\), giving your answer correct to 2 decimal places.
  2. State, with a reason, whether the trapezium rule gives an under-estimate or an over-estimate of the true value of the area of \(R\).
Edexcel C34 2016 January Q7
11 marks Moderate -0.3
7. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{101ec3c2-699e-4c74-bfdc-d8c610646571-10_543_817_278_584} \captionsetup{labelformat=empty} \caption{Figure 3}
\end{figure} Figure 3 shows part of the curve \(C\) with equation $$y = \frac { 3 \ln \left( x ^ { 2 } + 1 \right) } { \left( x ^ { 2 } + 1 \right) } , \quad x \in \mathbb { R }$$
  1. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\)
  2. Using your answer to (a), find the exact coordinates of the stationary point on the curve \(C\) for which \(x > 0\). Write each coordinate in its simplest form.
    (5) The finite region \(R\), shown shaded in Figure 3, is bounded by the curve \(C\), the \(x\)-axis and the line \(x = 3\)
  3. Complete the table below with the value of \(y\) corresponding to \(x = 1\)
    \(x\)0123
    \(y\)0\(\frac { 3 } { 5 } \ln 5\)\(\frac { 3 } { 10 } \ln 10\)
  4. Use the trapezium rule with all the \(y\) values in the completed table to find an approximate value for the area of \(R\), giving your answer to 4 significant figures.
AQA C2 2006 January Q2
5 marks Moderate -0.8
2
  1. Use the trapezium rule with five ordinates (four strips) to find an approximate value for $$\int _ { 0 } ^ { 4 } \frac { 1 } { x ^ { 2 } + 1 } \mathrm {~d} x$$ giving your answer to four significant figures.
  2. State how you could obtain a better approximation to the value of the integral using the trapezium rule.
AQA C2 2013 January Q2
9 marks Moderate -0.8
2
  1. Use the trapezium rule with five ordinates (four strips) to find an approximate value for $$\int _ { 1 } ^ { 5 } \frac { 1 } { x ^ { 2 } + 1 } \mathrm {~d} x$$ giving your answer to three significant figures.
    1. Find \(\int \left( x ^ { - \frac { 3 } { 2 } } + 6 x ^ { \frac { 1 } { 2 } } \right) \mathrm { d } x\), giving the coefficient of each term in its simplest form.
    2. Hence find the value of \(\int _ { 1 } ^ { 4 } \left( x ^ { - \frac { 3 } { 2 } } + 6 x ^ { \frac { 1 } { 2 } } \right) \mathrm { d } x\).
Edexcel C4 Q2
7 marks Moderate -0.8
  1. (a) Use the trapezium rule with two intervals of equal width to find an approximate value for the integral
$$\int _ { 0 } ^ { 2 } \arctan x \mathrm {~d} x$$ (b) Use the trapezium rule with four intervals of equal width to find an improved approximation for the value of the integral.