CAIE P2 2005 June — Question 6

Exam BoardCAIE
ModuleP2 (Pure Mathematics 2)
Year2005
SessionJune
TopicIndefinite & Definite Integrals

6
\includegraphics[max width=\textwidth, alt={}, center]{08210e25-0f0e-405b-b72d-1bf989689b0a-3_641_865_264_641} The diagram shows the part of the curve \(y = \frac { \ln x } { x }\) for \(0 < x \leqslant 4\). The curve cuts the \(x\)-axis at \(A\) and its maximum point is \(M\).
  1. Write down the coordinates of \(A\).
  2. Show that the \(x\)-coordinate of \(M\) is e, and write down the \(y\)-coordinate of \(M\) in terms of e.
  3. Use the trapezium rule with three intervals to estimate the value of $$\int _ { 1 } ^ { 4 } \frac { \ln x } { x } \mathrm {~d} x$$ correct to 2 decimal places.
  4. State, with a reason, whether the trapezium rule gives an under-estimate or an over-estimate of the true value of the integral in part (iii).