Express variable in terms of another

Given an equation with logarithms, rearrange and apply laws to express one variable (usually y) in terms of another (usually x) without logarithms.

23 questions · Moderate -0.3

Sort by: Default | Easiest first | Hardest first
CAIE P2 2005 June Q2
5 marks Moderate -0.8
2
  1. Use logarithms to solve the equation \(3 ^ { X } = 8\), giving your answer correct to 2 decimal places.
  2. It is given that $$\ln z = \ln ( y + 2 ) - 2 \ln y$$ where \(y > 0\). Express \(z\) in terms of \(y\) in a form not involving logarithms.
CAIE P3 2013 June Q2
4 marks Standard +0.3
2 It is given that \(\ln ( y + 1 ) - \ln y = 1 + 3 \ln x\). Express \(y\) in terms of \(x\), in a form not involving logarithms.
CAIE P3 2013 November Q1
4 marks Standard +0.3
1 Given that \(2 \ln ( x + 4 ) - \ln x = \ln ( x + a )\), express \(x\) in terms of \(a\).
CAIE P3 2016 November Q1
3 marks Moderate -0.5
1 It is given that \(z = \ln ( y + 2 ) - \ln ( y + 1 )\). Express \(y\) in terms of \(z\).
CAIE P3 2019 November Q1
3 marks Standard +0.3
1 Given that \(\ln \left( 1 + \mathrm { e } ^ { 2 y } \right) = x\), express \(y\) in terms of \(x\).
CAIE P2 2009 November Q2
4 marks Moderate -0.5
2 It is given that \(\ln ( y + 5 ) - \ln y = 2 \ln x\). Express \(y\) in terms of \(x\), in a form not involving logarithms.
CAIE P3 2023 March Q1
3 marks Moderate -0.5
1 It is given that \(x = \ln ( 2 y - 3 ) - \ln ( y + 4 )\).
Express \(y\) in terms of \(x\).
Edexcel C12 2017 June Q9
10 marks Moderate -0.3
9. (i) Find the exact value of \(x\) for which $$2 \log _ { 10 } ( x - 2 ) - \log _ { 10 } ( x + 5 ) = 0$$ (ii) Given $$\log _ { p } ( 4 y + 1 ) - \log _ { p } ( 2 y - 2 ) = 1 \quad p > 2 , y > 1$$ express \(y\) in terms of \(p\).
Edexcel P2 2018 Specimen Q6
7 marks Moderate -0.8
6. (i) Find the exact value of \(x\) for which $$\log _ { 2 } ( 2 x ) = \log _ { 2 } ( 5 x + 4 ) - 3$$ (ii) Given that $$\log _ { a } y + 3 \log _ { a } 2 = 5$$ express \(y\) in terms of \(a\). Give your answer in its simplest form. \includegraphics[max width=\textwidth, alt={}, center]{0aafa21b-25f4-4f36-b914-bbaf6cae7a66-18_2674_1948_107_118}
Edexcel C2 2014 January Q6
5 marks Standard +0.3
6. Given that $$\log _ { x } ( 7 y + 1 ) - \log _ { x } ( 2 y ) = 1 , \quad x > 4 , \quad 0 < y < 1$$ express \(y\) in terms of \(x\).
Edexcel C2 2013 June Q7
7 marks Moderate -0.3
7. (i) Find the exact value of \(x\) for which $$\log _ { 2 } ( 2 x ) = \log _ { 2 } ( 5 x + 4 ) - 3$$ (ii) Given that $$\log _ { a } y + 3 \log _ { a } 2 = 5$$ express \(y\) in terms of \(a\).
Give your answer in its simplest form.
Edexcel C2 2017 June Q7
7 marks Moderate -0.3
7. (i) \(2 \log ( x + a ) = \log \left( 16 a ^ { 6 } \right)\), where \(a\) is a positive constant Find \(x\) in terms of \(a\), giving your answer in its simplest form.
(ii) \(\quad \log _ { 3 } ( 9 y + b ) - \log _ { 3 } ( 2 y - b ) = 2\), where \(b\) is a positive constant Find \(y\) in terms of \(b\), giving your answer in its simplest form.
OCR C2 2006 January Q7
8 marks Moderate -0.5
7
  1. Express each of the following in terms of \(\log _ { 10 } x\) and \(\log _ { 10 } y\).
    (a) \(\log _ { 10 } \left( \frac { x } { y } \right)\) (b) \(\log _ { 10 } \left( 10 x ^ { 2 } y \right)\)
  2. Given that $$2 \log _ { 10 } \left( \frac { x } { y } \right) = 1 + \log _ { 10 } \left( 10 x ^ { 2 } y \right)$$ find the value of \(y\) correct to 3 decimal places.
Edexcel Paper 1 2019 June Q9
5 marks Standard +0.3
  1. Given that \(a > b > 0\) and that \(a\) and \(b\) satisfy the equation
$$\log a - \log b = \log ( a - b )$$
  1. show that $$a = \frac { b ^ { 2 } } { b - 1 }$$ (3)
  2. Write down the full restriction on the value of \(b\), explaining the reason for this restriction.
Edexcel Paper 1 Specimen Q4
4 marks Standard +0.8
4. Given that \(a\) is a positive constant and $$\int _ { a } ^ { 2 a } \frac { t + 1 } { t } \mathrm {~d} t = \ln 7$$ show that \(a = \ln k\), where \(k\) is a constant to be found.
OCR MEI AS Paper 2 Specimen Q2
4 marks Moderate -0.8
2
  1. Express \(2 \log _ { 3 } x + \log _ { 3 } a\) as a single logarithm.
  2. Given that \(2 \log _ { 3 } x + \log _ { 3 } a = 2\), express \(x\) in terms of \(a\).
AQA C2 2008 January Q7
4 marks Easy -1.2
7
  1. Given that $$\log _ { a } x = \log _ { a } 16 - \log _ { a } 2$$ write down the value of \(x\).
  2. Given that $$\log _ { a } y = 2 \log _ { a } 3 + \log _ { a } 4 + 1$$ express \(y\) in terms of \(a\), giving your answer in a form not involving logarithms.
AQA C2 2011 January Q8
7 marks Moderate -0.3
8
  1. Given that \(2 \log _ { k } x - \log _ { k } 5 = 1\), express \(k\) in terms of \(x\). Give your answer in a form not involving logarithms.
  2. Given that \(\log _ { a } y = \frac { 3 } { 2 }\) and that \(\log _ { 4 } a = b + 2\), show that \(y = 2 ^ { p }\), where \(p\) is an expression in terms of \(b\).
    \includegraphics[max width=\textwidth, alt={}]{1c06ba04-575c-4eb8-b4aa-0a7510838cd2-09_2102_1717_605_150}
AQA C2 2012 January Q7
10 marks Standard +0.3
7
  1. Sketch the graph of \(y = \frac { 1 } { 2 ^ { x } }\), indicating the value of the intercept on the \(y\)-axis.
  2. Use logarithms to solve the equation \(\frac { 1 } { 2 ^ { x } } = \frac { 5 } { 4 }\), giving your answer to three significant figures.
  3. Given that $$\log _ { a } \left( b ^ { 2 } \right) + 3 \log _ { a } y = 3 + 2 \log _ { a } \left( \frac { y } { a } \right)$$ express \(y\) in terms of \(a\) and \(b\).
    Give your answer in a form not involving logarithms.
AQA C2 2013 January Q4
3 marks Moderate -0.8
4 Given that $$\log _ { a } N - \log _ { a } x = \frac { 3 } { 2 }$$ express \(x\) in terms of \(a\) and \(N\), giving your answer in a form not involving logarithms.
(3 marks)
AQA C2 2006 June Q5
6 marks Moderate -0.8
5
  1. Given that $$\log _ { a } x = 2 \log _ { a } 6 - \log _ { a } 3$$ show that \(x = 12\).
  2. Given that $$\log _ { a } y + \log _ { a } 5 = 7$$ express \(y\) in terms of \(a\), giving your answer in a form not involving logarithms.
    (3 marks)
OCR C2 Q7
3 marks Moderate -0.8
7
  1. Evaluate \(\log _ { 5 } 15 + \log _ { 5 } 20 - \log _ { 5 } 12\).
  2. Given that \(y = 3 \times 10 ^ { 2 x }\), show that \(x = a \log _ { 10 } (\) by \()\), where the values of the constants \(a\) and \(b\) are to be found.
AQA Paper 2 2022 June Q9
4 marks Moderate -0.8
9 Given that $$\log _ { 2 } x ^ { 3 } - \log _ { 2 } y ^ { 2 } = 9$$ show that $$x = A y ^ { p }$$ where \(A\) is an integer and \(p\) is a rational number. \includegraphics[max width=\textwidth, alt={}, center]{ad6590e8-6673-45ca-bef3-a14716978827-15_2488_1716_219_153}