Solve linear inequality

Solve a simple linear inequality by rearranging and isolating x.

34 questions · Easy -1.8

Sort by: Default | Easiest first | Hardest first
OCR MEI C1 2006 January Q4
4 marks Easy -1.8
4 Solve the inequality \(\frac { 3 ( 2 x + 1 ) } { 4 } > - 6\).
OCR MEI C1 2009 January Q3
3 marks Easy -1.8
3 Solve the inequality \(7 - x < 5 x - 2\).
OCR MEI C1 2007 June Q1
3 marks Easy -2.0
1 Solve the inequality \(1 - 2 x < 4 + 3 x\).
OCR MEI C1 2008 June Q1
2 marks Easy -1.8
1 Solve the inequality \(3 x - 1 > 5 - x\).
OCR MEI C1 2015 June Q4
3 marks Easy -1.8
4 Solve the inequality \(\frac { 4 x - 5 } { 7 } > 2 x + 1\).
OCR C1 Q1
3 marks Easy -1.8
  1. Solve the inequality
$$4 ( x - 2 ) < 2 x + 5$$
OCR MEI C1 Q1
3 marks Easy -1.8
1 Solve the inequality \(\frac { 4 x - 5 } { 7 } > 2 x + 1\).
OCR MEI C1 Q4
4 marks Easy -1.8
4 Solve the following inequality. $$\frac { 2 x + 1 } { 5 } < \frac { 3 x + 4 } { 6 }$$
OCR MEI C1 Q5
3 marks Easy -1.8
5 Solve the inequality \(6 ( x + 3 ) > 2 x + 5\).
OCR MEI C1 Q6
2 marks Easy -1.8
6 Solve the inequality \(5 - 2 x < 0\).
OCR MEI C1 Q8
3 marks Easy -1.8
8 Solve the inequality \(\frac { 5 x - 3 } { 2 } < x + 5\).
OCR MEI C1 Q10
3 marks Easy -1.8
10 Solve the inequality \(7 - x < 5 x - 2\).
OCR MEI C1 Q11
2 marks Easy -1.8
11 Solve the inequality \(3 x - 1 > 5 - x\).
OCR MEI C1 Q12
3 marks Easy -1.8
12 Solve the inequality \(1 - 2 x < 4 + 3 x\).
OCR MEI C1 Q14
4 marks Easy -1.8
14 Solve the inequality \(\frac { 3 ( 2 x + 1 ) } { 4 } > - 6\).
OCR MEI C1 2010 January Q2
3 marks Easy -1.8
2 Solve the inequality \(\frac { 5 x - 3 } { 2 } < x + 5\).
OCR MEI C1 2011 January Q4
2 marks Easy -1.8
4 Solve the inequality \(5 - 2 x < 0\).
OCR MEI C1 2012 January Q5
4 marks Easy -1.8
5 Solve the following inequality. $$\frac { 2 x + 1 } { 5 } < \frac { 3 x + 4 } { 6 }$$
OCR MEI C1 2013 January Q8
4 marks Easy -1.8
8 Rearrange the equation \(5 c + 9 t = a ( 2 c + t )\) to make \(c\) the subject.
OCR MEI C1 2009 June Q2
3 marks Easy -1.8
2 Make \(a\) the subject of the formula \(s = u t + \frac { 1 } { 2 } a t ^ { 2 }\).
OCR MEI C1 2011 June Q1
3 marks Easy -1.8
1 Solve the inequality \(6 ( x + 3 ) > 2 x + 5\).
OCR MEI C1 2012 June Q2
3 marks Easy -1.8
2 Make \(b\) the subject of the following formula. $$a = \frac { 2 } { 3 } b ^ { 2 } c$$
OCR MEI C1 2013 June Q4
3 marks Easy -1.8
4 Rearrange the following formula to make \(r\) the subject, where \(r > 0\). $$V = \frac { 1 } { 3 } \pi r ^ { 2 } ( a + b )$$
OCR MEI C1 2014 June Q5
4 marks Easy -1.8
5 Make \(a\) the subject of \(3 ( a + 4 ) = a c + 5 f\).
OCR MEI C1 2016 June Q3
4 marks Easy -1.8
3
  1. Solve the inequality \(\frac { 1 - 2 x } { 4 } > 3\).
  2. Simplify \(\left( 5 c ^ { 2 } d \right) ^ { 3 } \times \frac { 2 c ^ { 4 } } { d ^ { 5 } }\).