Small oscillations of rigid bodies (compound pendulum)

A question is this type if and only if it involves showing that a rigid body (rod, disc, lamina, or composite body) performs approximately simple harmonic motion for small angular displacements about a pivot, typically using the approximation sin(θ) ≈ θ and moment of inertia calculations.

18 questions · Challenging +1.2

Sort by: Default | Easiest first | Hardest first
CAIE FP2 2013 November Q11 EITHER
Hard +2.3
\includegraphics[max width=\textwidth, alt={}]{38694ab3-44cd-48d1-922a-d5eb09b62826-5_320_831_459_657}
A rigid body consists of a thin uniform rod \(A B\), of mass \(4 m\) and length \(6 a\), joined at \(B\) to a point on the circumference of a uniform circular disc, with centre \(O\), mass \(8 m\) and radius \(2 a\). The point \(C\) on the circumference of the disc is such that \(B C\) is a diameter and \(A B C\) is a straight line (see diagram). The body rotates about a smooth fixed horizontal axis through \(C\), perpendicular to the plane of the disc. The angle between \(C A\) and the downward vertical at time \(t\) is denoted by \(\theta\).
  1. Given that the body is performing small oscillations about the downward vertical, show that the period of these oscillations is approximately \(16 \pi \sqrt { } \left( \frac { a } { 11 g } \right)\).
  2. Given instead that the body is released from rest in the position given by \(\cos \theta = 0.6\), find the maximum speed of \(A\).
OCR M3 2013 January Q7
14 marks Standard +0.3
7 A simple pendulum consists of a light inextensible string of length 0.8 m and a particle \(P\) of mass \(m \mathrm {~kg}\). The pendulum is hanging vertically at rest from a fixed point \(O\) when \(P\) is given a horizontal velocity of \(0.3 \mathrm {~m} \mathrm {~s} ^ { - 1 }\).
  1. Show that, in the subsequent motion, the maximum angle between the string and the downward vertical is 0.107 radians, correct to 3 significant figures.
  2. Show that the motion may be modelled as simple harmonic motion, and find the period of this motion.
  3. Find the time after the start of the motion when the velocity of the particle is first \(- 0.2 \mathrm {~ms} ^ { - 1 }\) and find the angular displacement of \(O P\) from the downward vertical at this time.
OCR M3 2006 June Q4
11 marks Standard +0.3
4 A particle is connected to a fixed point by a light inextensible string of length 2.45 m to make a simple pendulum. The particle is released from rest with the string taut and inclined at 0.1 radians to the downward vertical.
  1. Show that the motion of the particle is approximately simple harmonic with period 3.14 s , correct to 3 significant figures. Calculate, in either order,
  2. the angular speed of the pendulum when it has moved 0.04 radians from the initial position,
  3. the time taken by the pendulum to move 0.04 radians from the initial position.
OCR M3 2009 June Q6
13 marks Challenging +1.2
6
\includegraphics[max width=\textwidth, alt={}, center]{7a67db39-4934-4808-a56b-c6841950d324-4_368_131_274_1005} A particle \(P\) of mass \(m \mathrm {~kg}\) is attached to one end of a light inextensible string of length \(L \mathrm {~m}\). The other end of the string is attached to a fixed point \(O\). The particle is held at rest with the string taut and then released. \(P\) starts to move and in the subsequent motion the angular displacement of \(O P\), at time \(t \mathrm {~s}\), is \(\theta\) radians from the downward vertical (see diagram). The initial value of \(\theta\) is 0.05 .
  1. Show that \(\frac { \mathrm { d } ^ { 2 } \theta } { \mathrm {~d} t ^ { 2 } } = - \frac { g } { L } \sin \theta\).
  2. Hence show that the motion of \(P\) is approximately simple harmonic.
  3. Given that the period of the approximate simple harmonic motion is \(\frac { 4 } { 7 } \pi \mathrm {~s}\), find the value of \(L\).
  4. Find the value of \(\theta\) when \(t = 0.7 \mathrm {~s}\), and the value of \(t\) when \(\theta\) next takes this value.
  5. Find the speed of \(P\) when \(t = 0.7 \mathrm {~s}\).
    \includegraphics[max width=\textwidth, alt={}, center]{7a67db39-4934-4808-a56b-c6841950d324-4_422_501_1500_822} A hollow cylinder has internal radius \(a\). The cylinder is fixed with its axis horizontal. A particle \(P\) of mass \(m\) is at rest in contact with the smooth inner surface of the cylinder. \(P\) is given a horizontal velocity \(u\), in a vertical plane perpendicular to the axis of the cylinder, and begins to move in a vertical circle. While \(P\) remains in contact with the surface, \(O P\) makes an angle \(\theta\) with the downward vertical, where \(O\) is the centre of the circle. The speed of \(P\) is \(v\) and the magnitude of the force exerted on \(P\) by the surface is \(R\) (see diagram).
  6. Find \(v ^ { 2 }\) in terms of \(u , a , g\) and \(\theta\) and show that \(R = \frac { m u ^ { 2 } } { a } + m g ( 3 \cos \theta - 2 )\).
  7. Given that \(P\) just reaches the highest point of the circle, find \(u ^ { 2 }\) in terms of \(a\) and \(g\), and show that in this case the least value of \(v ^ { 2 }\) is \(a g\).
  8. Given instead that \(P\) oscillates between \(\theta = \pm \frac { 1 } { 6 } \pi\) radians, find \(u ^ { 2 }\) in terms of \(a\) and \(g\).
OCR M4 2003 June Q7
13 marks Challenging +1.8
7
\includegraphics[max width=\textwidth, alt={}, center]{de53978b-aa96-4fa2-a928-81a16450154e-4_557_1036_278_553} A uniform rod \(A B\), of mass \(m\) and length \(2 a\), is pivoted to a fixed point at \(A\) and is free to rotate in a vertical plane. Two fixed vertical wires in this plane are a distance \(6 a\) apart and the point \(A\) is half-way between the two wires. Light smooth rings \(R _ { 1 }\) and \(R _ { 2 }\) slide on the wires and are connected to \(B\) by light elastic strings, each of natural length \(a\) and modulus of elasticity \(\frac { 1 } { 4 } m g\). The strings \(B R _ { 1 }\) and \(B R _ { 2 }\) are always horizontal and the angle between \(A B\) and the upward vertical is \(\theta\), where \(- \frac { 1 } { 2 } \pi < \theta < \frac { 1 } { 2 } \pi\) (see diagram).
  1. Taking \(A\) as the reference level for gravitational potential energy, show that the total potential energy of the system is $$m g a \left( 1 + \cos \theta + \sin ^ { 2 } \theta \right) .$$
  2. Given that \(\theta = 0\) is a position of stable equilibrium, find the approximate period of small oscillations about this position.
OCR M4 2004 June Q4
9 marks Standard +0.3
4 A uniform solid sphere, of mass 14 kg and radius 0.25 m , is rotating about a fixed axis which is a diameter of the sphere. A couple of constant moment 4.2 Nm about the axis, acting in the direction of rotation, is applied to the sphere.
  1. Find the angular acceleration of the sphere. During a time interval of 30 seconds the sphere rotates through 7500 radians.
  2. Find the angular speed of the sphere at the start of the time interval.
  3. Find the angular speed of the sphere at the end of the time interval.
  4. Find the work done by the couple during the time interval.
OCR M4 2005 June Q7
13 marks Challenging +1.8
7
\includegraphics[max width=\textwidth, alt={}, center]{b86c4b97-13a9-4aaf-8c95-20fe043b4532-3_585_801_991_647} A light rod \(A B\) of length \(2 a\) can rotate freely in a vertical plane about a fixed horizontal axis through \(A\). A particle of mass \(m\) is attached to the rod at \(B\). A fixed smooth ring \(R\) lies in the same vertical plane as the rod, where \(A R = a\) and \(A R\) makes an angle \(\frac { 1 } { 4 } \pi\) above the horizontal. A light elastic string, of natural length \(a\) and modulus of elasticity \(m g \sqrt { } 2\), passes through the ring \(R\); one end is fixed to \(A\) and the other end is fixed to \(B\). The rod makes an angle \(\theta\) below the horizontal, where \(- \frac { 1 } { 4 } \pi < \theta < \frac { 3 } { 4 } \pi\) (see diagram).
  1. Use the cosine rule to show that \(R B ^ { 2 } = a ^ { 2 } ( 5 - ( 2 \sqrt { } 2 ) \cos \theta + ( 2 \sqrt { } 2 ) \sin \theta )\).
  2. Show that \(\theta = 0\) is a position of stable equilibrium.
  3. Show that \(\frac { \mathrm { d } ^ { 2 } \theta } { \mathrm {~d} t ^ { 2 } } = - k \sin \theta\), expressing the constant \(k\) in terms of \(a\) and \(g\), and hence write down the approximate period of small oscillations about the equilibrium position \(\theta = 0\).
OCR M4 2012 June Q6
12 marks Challenging +1.8
6
\includegraphics[max width=\textwidth, alt={}, center]{ab760a4b-e0ec-4256-838f-ed6c762ff18b-3_716_483_890_790} Two small smooth pegs \(P\) and \(Q\) are fixed at a distance \(2 a\) apart on the same horizontal level, and \(A\) is the mid-point of \(P Q\). A light rod \(A B\) of length \(4 a\) is freely pivoted at \(A\) and can rotate in the vertical plane containing \(P Q\), with \(B\) below the level of \(P Q\). A particle of mass \(m\) is attached to the rod at \(B\). A light elastic string, of natural length \(2 a\) and modulus of elasticity \(\lambda\), passes round the pegs \(P\) and \(Q\) and its two ends are attached to the rod at the point \(X\), where \(A X = a\). The angle between the rod and the downward vertical is \(\theta\), where \(- \frac { 1 } { 2 } \pi < \theta < \frac { 1 } { 2 } \pi\) (see diagram). You are given that the elastic energy stored in the string is \(\lambda a ( 1 + \cos \theta )\).
  1. Show that \(\theta = 0\) is a position of equilibrium, and show that the equilibrium is stable if \(\lambda < 4 m g\).
  2. Given that \(\lambda = 3 m g\), show that \(\ddot { \theta } = - k \frac { g } { a } \sin \theta\), stating the value of the constant \(k\). Hence find the approximate period of small oscillations of the system about the equilibrium position \(\theta = 0\).
OCR M4 2016 June Q1
4 marks Standard +0.3
1 A uniform square lamina, of mass 5 kg and side 0.2 m , is rotating about a fixed vertical axis that is perpendicular to the lamina and that passes through its centre. A couple of constant moment 0.06 Nm is applied to the lamina. The lamina turns through an angle of 155 radians while its angular speed increases from \(8 \mathrm { rads } ^ { - 1 }\) to \(\omega \mathrm { rads } ^ { - 1 }\). Find \(\omega\).
OCR M4 2017 June Q1
7 marks Challenging +1.2
1 A uniform rod with centre \(C\) has mass \(2 M\) and length 4a. The rod is free to rotate in a vertical plane about a smooth fixed horizontal axis passing through a point \(A\) on the rod, where \(A C = k a\) and \(0 < k < 2\). The rod is making small oscillations about the equilibrium position with period \(T\).
  1. Show that \(T = 2 \pi \sqrt { \frac { a } { 3 g } \left( \frac { 4 + 3 k ^ { 2 } } { k } \right) }\). (You may assume the standard formula \(T = 2 \pi \sqrt { \frac { I } { m g h } }\) for the period of small oscillations of a compound pendulum.)
  2. Hence find the value of \(k ^ { 2 }\) for which the period of oscillations is least.
OCR MEI M4 2008 June Q4
24 marks Challenging +1.2
4 A uniform smooth pulley can rotate freely about its axis, which is fixed and horizontal. A light elastic string AB is attached to the pulley at the end B . The end A is attached to a fixed point such that the string is vertical and is initially at its natural length with B at the same horizontal level as the axis. In this position a particle P is attached to the highest point of the pulley. This initial position is shown in Fig. 4.1. The radius of the pulley is \(a\), the mass of P is \(m\) and the stiffness of the string AB is \(\frac { m g } { 10 a }\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{636e1d23-3bbb-469f-8fc9-1f64da865126-3_451_517_607_466} \captionsetup{labelformat=empty} \caption{Fig. 4.1}
\end{figure} \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{636e1d23-3bbb-469f-8fc9-1f64da865126-3_456_451_607_1226} \captionsetup{labelformat=empty} \caption{Fig. 4.2}
\end{figure}
  1. Fig. 4.2 shows the system with the pulley rotated through an angle \(\theta\) and the string stretched. Write down the extension of the string and hence find the potential energy, \(V\), of the system in this position. Show that \(\frac { \mathrm { d } V } { \mathrm {~d} \theta } = m g a \left( \frac { 1 } { 10 } \theta - \sin \theta \right)\).
  2. Hence deduce that the system has a position of unstable equilibrium at \(\theta = 0\).
  3. Explain how your expression for \(V\) relies on smooth contact between the string and the pulley. Fig. 4.3 shows the graph of the function \(\mathrm { f } ( \theta ) = \frac { 1 } { 10 } \theta - \sin \theta\). \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{636e1d23-3bbb-469f-8fc9-1f64da865126-3_538_1342_1706_404} \captionsetup{labelformat=empty} \caption{Fig. 4.3}
    \end{figure}
  4. Use the graph to give rough estimates of three further values of \(\theta\) (other than \(\theta = 0\) ) which give positions of equilibrium. In each case, state with reasons whether the equilibrium is stable or unstable.
  5. Show on a sketch the physical situation corresponding to the least value of \(\theta\) you identified in part (iv). On your sketch, mark clearly the positions of P and B .
  6. The equation \(\mathrm { f } ( \theta ) = 0\) has another root at \(\theta \approx - 2.9\). Explain, with justification, whether this necessarily gives a position of equilibrium.
Edexcel M5 2006 January Q4
6 marks Standard +0.8
4. A uniform \(\operatorname { rod } A B\), of mass \(m\) and length \(2 a\), is free to rotate in a vertical plane about a fixed smooth horizontal axis through \(A\) and perpendicular to the plane. The rod hangs in equilibrium with \(B\) below \(A\). The rod is rotated through a small angle and released from rest at time \(t = 0\).
  1. Show that the motion of the rod is approximately simple harmonic.
  2. Using this approximation, find the time \(t\) when the rod is first vertical after being released.
    (Total 6 marks)
Edexcel M5 2004 June Q4
10 marks Challenging +1.2
4. A uniform circular disc, of mass \(m\) and radius \(r\), has a diameter \(A B\). The point \(C\) on \(A B\) is such that \(A C = \frac { 1 } { 2 } r\). The disc can rotate freely in a vertical plane about a horizontal axis through \(C\), perpendicular to the plane of the disc. The disc makes small oscillations in a vertical plane about the position of equilibrium in which \(B\) is below \(A\).
  1. Show that the motion is approximately simple harmonic.
  2. Show that the period of this approximate simple harmonic motion is \(\pi \sqrt { \left( \frac { 6 r } { g } \right) }\). The speed of \(B\) when it is vertically below \(A\) is \(\sqrt { \left( \frac { g r } { 54 } \right) }\). The disc comes to rest when \(C B\) makes an angle \(\alpha\) with the downward vertical.
  3. Find an approximate value of \(\alpha\).
    (3)
Edexcel M5 2006 June Q6
12 marks Challenging +1.3
6. A uniform circular disc, of mass \(m\), radius \(a\) and centre \(O\), is free to rotate in a vertical plane about a fixed smooth horizontal axis. The axis passes through the mid-point \(A\) of a radius of the disc.
  1. Find an equation of motion for the disc when the line \(A O\) makes an angle \(\theta\) with the downward vertical through \(A\).
    (5)
  2. Hence find the period of small oscillations of the disc about its position of stable equilibrium. When the line \(A O\) makes an angle \(\theta\) with the downward vertical through \(A\), the force acting on the disc at \(A\) is \(\mathbf { F }\).
  3. Find the magnitude of the component of \(\mathbf { F }\) perpendicular to \(A O\).
    (5)
Edexcel M5 2013 June Q2
9 marks Challenging +1.2
2. A uniform square lamina \(S\) has side \(2 a\). The radius of gyration of \(S\) about an axis through a vertex, perpendicular to \(S\), is \(k\).
  1. Show that \(k ^ { 2 } = \frac { 8 a ^ { 2 } } { 3 }\). The lamina \(S\) is free to rotate in a vertical plane about a fixed smooth horizontal axis which is perpendicular to \(S\) and passes through a vertex.
  2. By writing down an equation of rotational motion for \(S\), find the period of small oscillations of \(S\) about its position of stable equilibrium.
Edexcel M5 2015 June Q6
16 marks Challenging +1.3
  1. A pendulum is modelled as a uniform rod \(A B\), of mass \(3 m\) and length \(2 a\), which has a particle of mass \(2 m\) attached at \(B\). The pendulum is free to rotate in a vertical plane about a fixed smooth horizontal axis \(L\) which passes through \(A\). The vertical plane is perpendicular to the axis \(L\).
    1. Find the period of small oscillations of the pendulum about its position of stable equilibrium.
    The pendulum is hanging at rest in a vertical position, with \(B\) below \(A\), when it is given a horizontal impulse of magnitude \(J\). The impulse acts at \(B\) in a vertical plane which is perpendicular to the axis \(L\). Given that the pendulum turns through an angle of \(60 ^ { \circ }\) before first coming to instantaneous rest,
  2. find \(J\).
Edexcel M5 Q7
17 marks Challenging +1.8
7. A uniform sphere, of mass \(m\) and radius \(a\), is free to rotate about a smooth fixed horizontal axis \(L\) which forms a tangent to the sphere. The sphere is hanging in equilibrium below the axis when it receives an impulse, causing it to rotate about \(L\) with an initial angular velocity of \(\sqrt { \frac { 18 g } { 7 a } }\). Show that, when the sphere has turned through an angle \(\theta\),
  1. the angular speed \(\omega\) of the sphere is given by \(\omega ^ { 2 } = \frac { 2 g } { 7 a } ( 4 + 5 \cos \theta )\),
  2. the angular acceleration of the sphere has magnitude \(\frac { 5 g } { 7 a } \sin \theta\).
  3. Hence find the magnitude of the force exerted by the axis on the sphere when the sphere comes to instantaneous rest for the first time. END
OCR M4 2010 June Q6
12 marks Challenging +1.2
  1. Show that \(\theta = 0\) is a position of stable equilibrium.
  2. Show that the kinetic energy of the system is \(4 m a ^ { 2 } \dot { \theta } ^ { 2 }\).
  3. By differentiating the energy equation, then making suitable approximations for \(\sin \theta\) and \(\cos \theta\), find the approximate period of small oscillations about the equilibrium position \(\theta = 0\). \section*{[Question 7 is printed overleaf.]}